99 research outputs found

    Post-GWAS Functional Characterization of Susceptibility Variants for Chronic Lymphocytic Leukemia

    Get PDF
    Recent genome-wide association studies (GWAS) have identified several gene variants associated with sporadic chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). Many of these CLL/SLL susceptibility loci are located in non-coding or intergenic regions, posing a significant challenge to determine their potential functional relevance. Here, we review the literature of all CLL/SLL GWAS and validation studies, and apply eQTL analysis to identify putatively functional SNPs that affect gene expression that may be causal in the pathogenesis of CLL/SLL. We tested 12 independent risk loci for their potential to alter gene expression through cis-acting mechanisms, using publicly available gene expression profiles with matching genotype information. Sixteen SNPs were identified that are linked to differential expression of SP140, a putative tumor suppressor gene previously associated with CLL/SLL. Three additional SNPs were associated with differential expression of DACT3 and GNG8, which are involved in the WNT/β-catenin- and G protein-coupled receptor signaling pathways, respectively, that have been previously implicated in CLL/SLL pathogenesis. Using in silico functional prediction tools, we found that 14 of the 19 significant eQTL SNPs lie in multiple putative regulatory elements, several of which have prior implications in CLL/SLL or other hematological malignancies. Although experimental validation is needed, our study shows that the use of existing GWAS data in combination with eQTL analysis and in silico methods represents a useful starting point to screen for putatively causal SNPs that may be involved in the etiology of CLL/SLL

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Genome-wide association study identifies multiple susceptibility loci for multiple myeloma

    Get PDF
    Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10-8), 6q21 (rs9372120, P=9.09 × 10-15), 7q36.1 (rs7781265, P=9.71 × 10-9), 8q24.21 (rs1948915, P=4.20 × 10-11), 9p21.3 (rs2811710, P=1.72 × 10-13), 10p12.1 (rs2790457, P=1.77 × 10-8), 16q23.1 (rs7193541, P=5.00 × 10-12) and 20q13.13 (rs6066835, P=1.36 × 10-13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development

    A systematic review of rodent pest research in Afro-Malagasy small-holder farming systems: Are we asking the right questions?

    Get PDF
    Rodent pests are especially problematic in terms of agriculture and public health since they can inflict considerable economic damage associated with their abundance, diversity, generalist feeding habits and high reproductive rates. To quantify rodent pest impacts and identify trends in rodent pest research impacting on small-holder agriculture in the Afro-Malagasy region we did a systematic review of research outputs from 1910 to 2015, by developing an a priori defined set of criteria to allow for replication of the review process. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We reviewed 162 publications, and while rodent pest research was spatially distributed across Africa (32 countries, including Madagascar), there was a disparity in number of studies per country with research biased towards four countries (Tanzania [25%], Nigeria [9%], Ethiopia [9%], Kenya [8%]) accounting for 51% of all rodent pest research in the Afro-Malagasy region. There was a disparity in the research themes addressed by Tanzanian publications compared to publications from the rest of the Afro-Malagasy region where research in Tanzania had a much more applied focus (50%) compared to a more basic research approach (92%) in the rest of the Afro-Malagasy region. We found that pest rodents have a significant negative effect on the Afro-Malagasy small-holder farming communities. Crop losses varied between cropping stages, storage and crops and the highest losses occurred during early cropping stages (46% median loss during seedling stage) and the mature stage (15% median loss). There was a scarcity of studies investigating the effectiveness of various management actions on rodent pest damage and population abundance. Our analysis highlights that there are inadequate empirical studies focused on developing sustainable control methods for rodent pests and rodent pests in the Africa-Malagasy context is generally ignored as a research topic

    Characterizing Genetic Risk at Known Prostate Cancer Susceptibility Loci in African Americans

    Get PDF
    GWAS of prostate cancer have been remarkably successful in revealing common genetic variants and novel biological pathways that are linked with its etiology. A more complete understanding of inherited susceptibility to prostate cancer in the general population will come from continuing such discovery efforts and from testing known risk alleles in diverse racial and ethnic groups. In this large study of prostate cancer in African American men (3,425 prostate cancer cases and 3,290 controls), we tested 49 risk variants located in 28 genomic regions identified through GWAS in men of European and Asian descent, and we replicated associations (at p≤0.05) with roughly half of these markers. Through fine-mapping, we identified nearby markers in many regions that better define associations in African Americans. At 8q24, we found 9 variants (p≤6×10−4) that best capture risk of prostate cancer in African Americans, many of which are more common in men of African than European descent. The markers found to be associated with risk at each locus improved risk modeling in African Americans (per allele OR = 1.17) over the alleles reported in the original GWAS (OR = 1.08). In summary, in this detailed analysis of the prostate cancer risk loci reported from GWAS, we have validated and improved upon markers of risk in some regions that better define the association with prostate cancer in African Americans. Our findings with variants at 8q24 also reinforce the importance of this region as a major risk locus for prostate cancer in men of African ancestry

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Genome-wide association study identifies risk loci for progressive chronic lymphocytic leukemia

    Get PDF
    Prognostication in patients with chronic lymphocytic leukemia (CLL) is challenging due to heterogeneity in clinical course. We hypothesize that constitutional genetic variation affects disease progression and could aid prognostication. Pooling data from seven studies incorporating 842 cases identifies two genomic locations associated with time from diagnosis to treatment, including 10q26.13 (rs736456, hazard ratio (HR) = 1.78, 95% confidence interval (CI) = 1.47–2.15; P = 2.71 × 10−9) and 6p (rs3778076, HR = 1.99, 95% CI = 1.55–2.55; P = 5.08 × 10−8), which are particularly powerful prognostic markers in patients with early stage CLL otherwise characterized by low-risk features. Expression quantitative trait loci analysis identifies putative functional genes implicated in modulating B-cell receptor or innate immune responses, key pathways in CLL pathogenesis. In this work we identify rs736456 and rs3778076 as prognostic in CLL, demonstrating that disease progression is determined by constitutional genetic variation as well as known somatic drivers

    Multiple Loci Are Associated with White Blood Cell Phenotypes

    Get PDF
    White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13 at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations of diverse ancestral backgrounds
    corecore