1,257 research outputs found

    Faster Arctic sea ice retreat in CMIP5 than in CMIP3 due to volcanoes

    Full text link
    The downward trend in Arctic sea ice extent is one of the most dramatic signals of climate change during recent decades. Comprehensive climate models have struggled to reproduce this, typically simulating a slower rate of sea ice retreat than has been observed. However, this bias has been widely noted to have decreased in models participating in the most recent phase of the Coupled Model Intercomparison Project (CMIP5) compared with the previous generation of models (CMIP3). Here we examine simulations from both CMIP3 and CMIP5. We find that simulated historical sea ice trends are influenced by volcanic forcing, which was included in all of the CMIP5 models but in only about half of the CMIP3 models. The volcanic forcing causes temporary simulated cooling in the 1980s and 1990s, which contributes to raising the simulated 1979-2013 global-mean surface temperature trends to values substantially larger than observed. We show that this warming bias is accompanied by an enhanced rate of Arctic sea ice retreat and hence a simulated sea ice trend that is closer to the observed value, which is consistent with previous findings of an approximately linear relationship between sea ice extent and global-mean surface temperature. We find that both generations of climate models simulate Arctic sea ice that is substantially less sensitive to global warming than has been observed. The results imply that the much of the difference in Arctic sea ice trends between CMIP3 and CMIP5 occurred due to the inclusion of volcanic forcing, rather than improved sea ice physics or model resolution.Comment: revised submission to Journal of Climat

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    On skillful decadal predictions of the subpolar North Atlantic

    Get PDF
    The North Atlantic is a crucial region for the prediction of weather and climate of North America and Europe and is the focus of this analysis. A skillful decadal prediction of the surface temperature was shown for several Earth system models, with the North Atlantic standing out as one region with higher predictive skill. This skill assessment concentrates on the rapid increase of the annual mean sea surface temperature of the North Atlantic subpolar gyre by about 1 K in the mid‑1990s and the adjacent years. This event-oriented analysis adds creditability to the decadal predictions and reveals the potential for improvements. The ability to simulate the observed sea surface temperature in the North Atlantic is quantified by using four versions of decadal predictions, which differ in model resolution, initialization technique, and the reanalysis data used in the assimilation run. While all four versions can reproduce the mid-1990s warming of the subpolar North Atlantic, the characteristics differ with lead time and version. The higher vertical resolution in the atmosphere and the higher horizontal resolution in the ocean improve the decadal prediction for longer lead times, and the anomaly initialization outperforms the full-field initialization for short lead times. The effect from the two different ocean reanalysis products on the predictive skill is strongest in the first two prediction years; a substantial cooling instead of the warming in the central North Atlantic reduces the skill score for the North Atlantic sea surface temperature in one version, whereas a too large interannual variability, compared with observations, lowers the skill score in the other version. The cooling patches are critical since the resulting gradients in sea surface temperature and their effect on atmospheric dynamics deviate from observations, and, moreover, hinder the skillful prediction of atmospheric variables

    Isolated tau leptons in events with large missing transverse momentum at HERA

    Get PDF
    A search for events containing isolated tau leptons and large missing transverse momentum, not originating from the tau decay, has been performed with the ZEUS detector at the electron-proton collider HERA, using 130 pb^-1 of integrated luminosity. A search was made for isolated tracks coming from hadronic tau decays. Observables based on the internal jet structure were exploited to discriminate between tau decays and quark- or gluon-induced jets. Three tau candidates were found, while 0.40 +0.12 -0.13 were expected from Standard Model processes, such as charged current deep inelastic scattering and single W-boson production. To search for heavy-particle decays, a more restrictive selection was applied to isolate tau leptons produced together with a hadronic final state with high transverse momentum. Two candidate events survive, while 0.20 +-0.05 events are expected from Standard Model processes.Comment: 28 pages, 4 figures, 3 tables, accepted by Phys. Lett. B. Updated with minor changes to the text requested by the journal refere

    Novel String Banana Template Method of Track Reconstruction for high Multiplicity Events with Significant Multiple Scattering

    Full text link
    Novel String Banana Template Method (SBTM) for track reconstruction in high multiplicity events in non-uniform magnetic field spectrometer with emphasis on the lowest momenta tracks with significant Multiple Scattering (MS) is described. Two steps model of track with additional parameter/s which takes into account MS for this particular track is introduced. SBTM is time efficient and demonstrates better resolutions than another method equivalent to the Least Squares method (LSM).Comment: 3 pages, 3 figures, DPF2004 Proceeding, International Journal of Modern Physics

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    Measurement of the open-charm contribution to the diffractive proton structure function

    Get PDF
    Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.Comment: 35 pages, 11 figures, 6 table

    Axionlike-particle generation by laser-plasma interaction

    Full text link
    Axion, a hypothetical particle that is crucial to quantum chromodynamics and dark matter theory, has not yet been found in any experiment. With the improvement of laser technique, much stronger quasi-static electric and magnetic fields can be created in laboratory using laser-plasma interaction. In this article, we discuss the feasibility of axion or axionlike-particle's exploring experiments using planar and cylindrically symmetric laser-plasma fields as backgrounds while probing with an ultrafast superstrong optical laser or x-ray free-electron laser with high photon number. Compared to classical magnet design, the axion source in laser-plasma interaction trades the accumulating length for the source's interacting strength. Besides, a structured field in the plasma creates a tunable transverse profile of the interaction and improves the signal-noise ratio via the mechanisms such as phase-matching. The mass of axion discussed in this article ranges from 1 \textmu eV to 1 eV. Some simple schemes and estimations of axion production and probe's polarization rotation are given, which reveals the possibility of future laser-plasma axion source in laboratory.Comment: 24 pages, 5 figure

    Sea-ice extent and its trend provide limited metrics of model performance

    Get PDF
    We examine how the evaluation of modelled sea-ice coverage against reality is affected by uncertainties in the retrieval of sea-ice coverage from satellite, by the usage of sea-ice extent to overcome these uncertainties, and by internal variability. We find that for Arctic summer sea ice, model biases in sea-ice extent can be qualitatively different from biases in sea-ice area. This is because about half of the CMIP5 models and satellite retrievals based on the Bootstrap and the ASI algorithm show a compact ice cover in summer with large areas of high-concentration sea ice, while the other half of the CMIP5 models and satellite retrievals based on the NASA Team algorithm show a loose ice cover. For the Arctic winter sea-ice cover, differences in grid geometry can cause synthetic biases in sea-ice extent that are larger than the observational uncertainty. Comparing the uncertainty arising directly from the satellite retrievals with those that arise from internal variability, we find that the latter by far dominates the uncertainty estimate for trends in sea-ice extent and area: most of the differences between modelled and observed trends can simply be explained by internal variability. For absolute sea-ice area and sea-ice extent, however, internal variability cannot explain the difference between model and observations for about half the CMIP5 models that we analyse here. All models that we examined have regional biases, as expressed by the root-mean-square error in concentration, that are larger than the differences between individual satellite algorithms
    corecore