11 research outputs found

    Application of relativistic scattering theory of x rays to diffraction anomalous fine structure in Cu

    Get PDF
    We apply our recent first-principles formalism of magnetic scattering of circularly polarized x rays to a single Cu crystal. We demonstrate the ability of our formalism to interpret the crystalline environment related near-edge fine structure features in the resonant x-ray scattering spectra at the Cu K absorption edge. We find good agreement between the computed and measured diffraction anomalous fine structure features of the x-ray scattering spectra

    Planck 2013 results. XVII. Gravitational lensing by large-scale structure

    Get PDF
    On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25σ. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2

    Urbanization in Iron Age Europe:Trajectories, patterns, and social dynamics

    Get PDF

    Comprendre les mots du cancer : LexOnco, dictionnaire d'oncologie pour les personnes malades et leurs proches. Aspects méthodologiques

    No full text
    International audienceIn response to the evolution of the information-seeking behaviour of patients and concerns from health professionals regarding cancer patient information, nthe French National Federation of Comprehensive Cancer Centres (FNCLCC) introduced, in 1998, an information and education program dedicated to patients and relatives, the SOR SAVOIR PATIENT program. Lexonco project is a dictionary on oncology adapted for patients and relatives and validated by medical experts and cancer patients. This paper describes the methodological aspects which take into account patients and experts'perspectives to produce the definitions.Face Ă  l'augmentation de la demande d'information des personnes malades et Ă  leur rĂŽle croissant dans la prise de dĂ©cision mĂ©dicale, l'accĂšs Ă  une information validĂ©e, comprĂ©hensible et systĂ©matiquement actualisĂ©e, en correspondance avec leurs besoins, est un enjeu majeur de SantĂ© publique. AmĂ©liorer la qualitĂ© de la prise en charge des patients passe par l'appropriation des principaux termes en lien avec la maladie. Dans le cadre du programme pluridisciplinaire SOR SAVOIR PATIENT, le projet Lexonco (LEXique d'ONCOlogie) vise Ă  offrir aux patients un dictionnaire sur le cancer, validĂ© sur le plan mĂ©dical et qui tient compte des besoins d'information et des prĂ©fĂ©rences des personnes concernĂ©es par le cancer. Cet article dĂ©crit le projet en insistant plus particuliĂšrement sur les principaux aspects mĂ©thodologiques mis en Ɠuvre pour construire et valider les dĂ©finitions destinĂ©es aux patients

    Planck 2013 results. XVII. Gravitational lensing by large-scale structure

    No full text
    On the arcminute angular scales probed by Planck, the CMB anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217GHz frequency bands with an overall significance of greater than 25sigma. We use the temperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting LCDM model for the Planck temperature power spectrum, showing that this measurement at z=1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the RMS amplitude of matter fluctuations at z~2

    Planck 2013 results. I. Overview of products and scientific results

    No full text
    The ESA's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the CMB and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the SZ effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter LCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25 sigma. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations derived from CMB data and that derived from SZ data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak
    corecore