296 research outputs found

    Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode <it>Caenorhabditis elegans</it>, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success.</p> <p>Results</p> <p>We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners.</p> <p>Conclusions</p> <p>We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that <it>C. elegans </it>harbors substantial heritable variation for traits contributing to male reproductive success. <it>C. elegans </it>provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits.</p

    Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data

    An Assessment of the Effectiveness of High Definition Cameras as Remote Monitoring Tools for Dolphin Ecology Studies.

    Get PDF
    Research involving marine mammals often requires costly field programs. This paper assessed whether the benefits of using cameras outweighs the implications of having personnel performing marine mammal detection in the field. The efficacy of video and still cameras to detect Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the Fremantle Harbour (Western Australia) was evaluated, with consideration on how environmental conditions affect detectability. The cameras were set on a tower in the Fremantle Port channel and videos were perused at 1.75 times the normal speed. Images from the cameras were used to estimate position of dolphins at the water’s surface. Dolphin detections ranged from 5.6 m to 463.3 m for the video camera, and from 10.8 m to 347.8 m for the still camera. Detection range showed to be satisfactory when compared to distances at which dolphins would be detected by field observers. The relative effect of environmental conditions on detectability was considered by fitting a Generalised Estimation Equations (GEEs) model with Beaufort, level of glare and their interactions as predictors and a temporal auto-correlation structure. The best fit model indicated level of glare had an effect, with more intense periods of glare corresponding to lower occurrences of observed dolphins. However this effect was not large (-0.264) and the parameter estimate was associated with a large standard error (0.113).The limited field of view was the main restraint in that cameras can be only applied to detections of animals observed rather than counts of individuals. However, the use of cameras was effective for long term monitoring of occurrence of dolphins, outweighing the costs and reducing the health and safety risks to field personal. This study showed that cameras could be effectively implemented onshore for research such as studying changes in habitat use in response to development and construction activities

    DNA sequence diversity and the efficiency of natural selection in animal mitochondrial DNA

    Get PDF
    Selection is expected to be more efficient in species that are more diverse because both the efficiency of natural selection and DNA sequence diversity are expected to depend upon the effective population size. We explore this relationship across a data set of 751 mammal species for which we have mitochondrial polymorphism data. We introduce a method by which we can examine the relationship between our measure of the efficiency of natural selection, the nonsynonymous relative to the synonymous nucleotide site diversity (πN/πS), and synonymous nucleotide diversity (πS), avoiding the statistical non-independence between the two quantities. We show that these two variables are strongly negatively and linearly correlated on a log scale. The slope is such that as πS doubles, πN/πS is reduced by 34%. We show that the slope of this relationship differs between the two phylogenetic groups for which we have the most data, rodents and bats, and that it also differs between species with high and low body mass, and between those with high and low mass-specific metabolic rate
    corecore