130 research outputs found

    Real-world evidence on non-invasive tests and associated cut-offs used to assess fibrosis in routine clinical practice

    Get PDF
    Background & Aims: Non-invasive tests (NITs) offer a practical solution for advanced fibrosis identification in non-alcoholic fatty liver disease (NAFLD). Despite increasing implementation, their use is not standardised, which can lead to inconsistent interpretation and risk stratification. We aimed to assess the types of NITs and the corresponding cut-offs used in a range of healthcare settings. / Methods: A survey was distributed to a convenience sample of liver health experts who participated in a global NAFLD consensus statement. Respondents provided information on the NITs used in their clinic with the corresponding cut-offs and those used in established care pathways in their areas. / Results: There were 35 respondents from 24 countries, 89% of whom practised in tertiary level settings. A total of 14 different NITs were used, and each respondent reported using at least one (median = 3). Of the respondents, 80% reported using FIB-4 and liver stiffness by vibration-controlled transient elastography (Fibroscanยฎ), followed by the NAFLD fibrosis score (49%). For FIB-4, 71% of respondents used a low cut-off of 7.5 to >20 kPa, respectively). / Conclusions: The cut-offs used for the same NITs for NAFLD risk stratification vary between clinicians. As cut-offs impact test performance, these findings underscore the heterogeneity in risk-assessment and support the importance of establishing consistent guidelines on the standardised use of NITs in NAFLD management. / Lay summary: Owing to the high prevalence of non-alcoholic fatty liver disease (NAFLD) in the general population it is important to identify those who have more advanced stages of liver fibrosis, so that they can be properly treated. Non-invasive tests (NITs) provide a practical way to assess fibrosis risk in patients. However, we found that the cut-offs used for the same NITs vary between clinicians. As cut-offs impact test performance, these findings highlight the importance of establishing consistent guidelines on the standardised use of NITs to optimise clinical management of NAFLD

    Activation of Pregnane X Receptor by Pregnenolone 16 ฮฑ-carbonitrile Prevents High-Fat Diet-Induced Obesity in AKR/J Mice

    Get PDF
    Pregnane X receptor (PXR) is known to function as a xenobiotic sensor to regulate xenobiotic metabolism through selective transcription of genes responsible for maintaining physiological homeostasis. Here we report that the activation of PXR by pregnenolone 16ฮฑ-carbonitrile (PCN) in AKR/J mice can prevent the development of high-fat diet-induced obesity and insulin resistance. The beneficial effects of PCN treatment are seen with reduced lipogenesis and gluconeogenesis in the liver, and lack of hepatic accumulation of lipid and lipid storage in the adipose tissues. RT-PCR analysis of genes involved in gluconeogenesis, lipid metabolism and energy homeostasis reveal that PCN treatment on high-fat diet-fed mice reduces expression in the liver of G6Pase, Pepck, Cyp7a1, Cd36, L-Fabp, Srebp, and Fas genes and slightly enhances expression of Cyp27a1 and Abca1 genes. RT-PCR analysis of genes involved in adipocyte differentiation and lipid metabolism in white adipose tissue show that PCN treatment reduces expression of Pparฮณ2, Acc1, Cd36, but increases expression of Cpt1b and Pparฮฑ genes in mice fed with high-fat diet. Similarly, PCN treatment of animals on high-fat diet increases expression in brown adipose tissue of Pparฮฑ, Hsl, Cpt1b, and Cd36 genes, but reduces expression of Acc1 and Scd-1 genes. PXR activation by PCN in high-fat diet fed mice also increases expression of genes involved in thermogenesis in brown adipose tissue including Dio2, Pgc-1ฮฑ, Pgc-1ฮฒ, Cidea, and Ucp-3. These results verify the important function of PXR in lipid and energy metabolism and suggest that PXR represents a novel therapeutic target for prevention and treatment of obesity and insulin resistance

    Review of genetic factors in intestinal malrotation

    Get PDF
    Intestinal malrotation is well covered in the surgical literature from the point of view of operative management, but few reviews to date have attempted to provide a comprehensive examination of the topic from the point of view of aetiology, in particular genetic aetiology. Following a brief overview of molecular embryology of midgut rotation, we present in this article instances of and case reports and case series of intestinal malrotation in which a genetic aetiology is likely. Autosomal dominant, autosomal recessive, X-linked and chromosomal forms of the disorder are represented. Most occur in syndromic form, that is to say, in association with other malformations. In many instances, recognition of a specific syndrome is possible, one of several examples discussed being the recently described association of intestinal malrotation with alveolar capillary dysplasia, due to mutations in the forkhead box transcription factor FOXF1. New advances in sequencing technology mean that the identification of the genes mutated in these disorders is more accessible than ever, and paediatric surgeons are encouraged to refer to their colleagues in clinical genetics where a genetic aetiology seems likely

    GLP-1 Analogs Reduce Hepatocyte Steatosis and Improve Survival by Enhancing the Unfolded Protein Response and Promoting Macroautophagy

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is a known outcome of hepatosteatosis. Free fatty acids (FFA) induce the unfolded protein response (UPR) or endoplasmic reticulum (ER) stress that may induce apoptosis. Recent data indicate ER stress to be a major player in the progression of fatty liver to more aggressive lesions. Autophagy on the other hand has been demonstrated to be protective against ER stress-induced cell death. We hypothesized that exendin-4 (GLP-1 analog) treatment of fat loaded hepatocytes can reduce steatosis by autophagy which leads to reduced ER stress-related hepatocyte apoptosis.Primary human hepatocytes were loaded with saturated, cis- and trans-unsaturated fatty acids (palmitic, oleic and elaidic acid respectively). Steatosis, induced with all three fatty acids, was significantly resolved after exendin-4 treatment. Exendin-4 sustained levels of GRP78 expression in fat-loaded cells when compared to untreated fat-loaded cells alone. In contrast, CHOP (C/EBP homologous protein); the penultimate protein that leads to ER stress-related cell death was significantly decreased by exendin-4 in hepatocytes loaded with fatty acids. Finally, exendin-4 in fat loaded hepatocytes clearly promoted gene products associated with macroautophagy as measured by enhanced production of both Beclin-1 and LC3B-II, markers for autophagy; and visualized by transmission electron microscopy (TEM). Similar observations were made in mouse liver lysates after mice were fed with high fat high fructose diet and treated with a long acting GLP-1 receptor agonist, liraglutide.GLP-1 proteins appear to protect hepatocytes from fatty acid-related death by prohibition of a dysfunctional ER stress response; and reduce fatty acid accumulation, by activation of both macro-and chaperone-mediated autophagy. These findings provide a novel role for GLP-1 proteins in halting the progression of more aggressive lesions from underlying steatosis in humans afflicted with NAFLD

    Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    Get PDF
    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 ยตg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor ฮฒ subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor ฮฒ subunit

    Understanding the benefit of metformin use in cancer treatment

    Get PDF
    Biguanides have been developed for the treatment of hyperglycemia and type 2 diabetes. Recently, metformin, the most widely prescribed biguanide, has emerged as a potential anticancer agent. Epidemiological, preclinical and clinical evidence supports the use of metformin as a cancer therapeutic. The ability of metformin to lower circulating insulin may be particularly important for the treatment of cancers known to be associated with hyperinsulinemia, such as those of the breast and colon. Moreover, metformin may exhibit direct inhibitory effects on cancer cells by inhibiting mammalian target of rapamycin (mTOR) signaling and protein synthesis. The evidence supporting a role for metformin in cancer therapy and its potential molecular mechanisms of action are discussed

    Perivascular Fat and the Microcirculation: Relevance to Insulin Resistance, Diabetes, and Cardiovascular Disease

    Get PDF
    Type 2 diabetes and its major risk factor, obesity, are a growing burden for public health. The mechanisms that connect obesity and its related disorders, such as insulin resistance, type 2 diabetes, and hypertension, are still undefined. Microvascular dysfunction may be a pathophysiologic link between insulin resistance and hypertension in obesity. Many studies have shown that adipose tissue-derived substances (adipokines) interact with (micro)vascular function and influence insulin sensitivity. In the past, research focused on adipokines from perivascular adipose tissue (PVAT). In this review, we focus on the interactions between adipokines, predominantly from PVAT, and microvascular function in relation to the development of insulin resistance, diabetes, and cardiovascular disease

    ะžั†ะตะฝะบะฐ ะบะฐั‡ะตัั‚ะฒะฐ ะพะฑั€ะฐะทะพะฒะฐะฝะธั ะฝะฐ ะพัะฝะพะฒะต ะบะพะผะฟะตั‚ะตะฝั‚ะฝะพัั‚ะฝะพะณะพ ะฟะพะดั…ะพะดะฐ

    Get PDF
    ะ’ ั€ะฐะฑะพั‚ะต ะฟั€ะตะดัั‚ะฐะฒะปะตะฝ ะฟั€ะฐะบั‚ะธั‡ะตัะบะธะน ะพะฟั‹ั‚ ะพั†ะตะฝะบะธ ะบะฐั‡ะตัั‚ะฒะฐ ะพะฑั€ะฐะทะพะฒะฐะฝะธั ะฒ ะฝะพะฒะพะผ ั„ะพั€ะผะฐั‚ะต ะบะพะผะฟะตั‚ะตะฝั‚ะฝะพัั‚ะฝะพะณะพ ะฟะพะดั…ะพะด

    Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009

    Get PDF
    Insulin resistance is a hallmark of type 2 diabetes mellitus and is associated with a metabolic and cardiovascular cluster of disorders (dyslipidaemia, hypertension, obesity [especially visceral], glucose intolerance, endothelial dysfunction), each of which is an independent risk factor for cardiovascular disease (CVD). Multiple prospective studies have documented an association between insulin resistance and accelerated CVD in patients with type 2 diabetes, as well as in non-diabetic individuals. The molecular causes of insulin resistance, i.e. impaired insulin signalling through the phosphoinositol-3 kinase pathway with intact signalling through the mitogen-activated protein kinase pathway, are responsible for the impairment in insulin-stimulated glucose metabolism and contribute to the accelerated rate of CVD in type 2 diabetes patients. The current epidemic of diabetes is being driven by the obesity epidemic, which represents a state of tissue fat overload. Accumulation of toxic lipid metabolites (fatty acyl CoA, diacylglycerol, ceramide) in muscle, liver, adipocytes, beta cells and arterial tissues contributes to insulin resistance, beta cell dysfunction and accelerated atherosclerosis, respectively, in type 2 diabetes. Treatment with thiazolidinediones mobilises fat out of tissues, leading to enhanced insulin sensitivity, improved beta cell function and decreased atherogenesis. Insulin resistance and lipotoxicity represent the missing links (beyond the classical cardiovascular risk factors) that help explain the accelerated rate of CVD in type 2 diabetic patients
    • โ€ฆ
    corecore