622 research outputs found
Risk factors for surgical site infection after craniotomy: a prospective cohort study
Background: Although surgical site infection after craniotomy (SSI-CRAN) is a serious complication, risk factors for its development have not been well defined. We aim to identify the risk factors for developing SSI-CRAN in a large prospective cohort of adult patients undergoing craniotomy. Methods: A series of consecutive patients who underwent craniotomy at a university hospital from January 2013 to December 2015 were prospectively assessed. Demographic, epidemiological, surgical, clinical and microbiological data were collected. Patients were followed up in an active post-discharge surveillance programm e for up to one year after surgery. Multivariate analysis was carried out to identify independent risk factors for SSI-CRAN. Results: Among the 595 patients who underwent craniotomy, 91 (15.3%) episodes of SSI-CRAN were recorded, 67 (73.6%) of which were organ/space. Baseline demographic characteristics were similar among patients who developed SSI-CRAN and those who did not. The most frequent causative Gram-positive organisms were Cutibacterium acnes (23.1%) and Staphylococcus epidermidis (23.1%), whereas Enterobacter cloacae (12.1%) was the most commonly isolated Gram-negative agent. In the univariate analysis the factors associated with SSI-CRAN were ASA score > 2 (48.4% vs. 35.5% in SSI-CRAN and no SSI-CRAN respectively, p = 0.025), extrinsic tumour (28.6% vs. 19.2%, p = 0.05), and re-intervention (4.4% vs. 1.4%, p = 2 (AOR: 2.26, 95% CI: 1.32-3.87; p = .003) and re-intervention (OR: 8.93, 95% CI: 5.33-14.96; p < 0.001) were the only factors independently associated with SSI-CRAN. Conclusion: The risk factors and causative agents of SSI-CRAN identified in this study should be considered in the design of preventive strategies aimed to reduce the incidence of this serious complication
Carbapenem-resistant and carbapenem-susceptible isogenic isolates of Klebsiella pneumoniae ST101 causing infection in a tertiary hospital
Background: In this study we describe the clinical and molecular characteristics of an outbreak due to carbapenem-resistant Klebsiella pneumoniae (CR-KP) producing CTX-M-15 and OXA-48 carbapenemase. Isogenic strains, carbapenem-susceptible K. pneumoniae (CS-KP) producing CTX-M-15, were also involved in the outbreak. Results: From October 2010 to December 2012 a total of 62 CR-KP and 23 CS-KP were isolated from clinical samples of 42 patients (22 had resistant isolates, 14 had susceptible isolates, and 6 had both CR and CS isolates). All patients had underlying diseases and 17 of them (14 patients with CR-KP and 3 with CS-KP) had received carbapenems previously. The range of carbapenem MICs for total isolates were: imipenem: 2 to >32 μg/ml vs. 32 μg/ml vs. 32 μg/ml vs. <2 μg/ml. All the isolates were also resistant to gentamicin, ciprofloxacin, and cotrimoxazole. Both types of isolates shared a common PFGE pattern associated with the multilocus sequence type 101 (ST101). The blaCTX-M-15 gene was detected in all the isolates, whereas the bla OXA-48 gene was only detected in CR-KP isolates on a 70 kb plasmid. Conclusions: The clonal spread of K. pneumoniae ST101 expressing the OXA-48 and CTX-M-15 beta-lactamases was the cause of an outbreak of CR-KP infections. CTX-M-15-producing isolates lacking the bla OXA-48 gene coexisted during the outbreak
Optimal Timing for Cardiac Surgery in Infective Endocarditis with Neurological Complications: A Narrative Review
In patients with infective endocarditis and neurological complications, the optimal timing for cardiac surgery is unclear due to the varied risk of clinical deterioration when early surgery is performed. The aim of this review is to summarize the best evidence on the optimal timing for cardiac surgery in the presence of each type of neurological complication. An English literature search was carried out from June 2018 through July 2022. The resulting selection, comprising observational studies, clinical trials, systematic reviews and society guidelines, was organized into four sections according to the four groups of neurological complications: ischemic, hemorrhagic, infectious, and asymptomatic complications. Cardiac surgery could be performed without delay in cases of ischemic vascular neurological complication (provided the absence of severe damage, which can be avoided with the performance of mechanical thrombectomy in cases of major stroke), as well as infectious or asymptomatic complications. In the presence of intracranial hemorrhage, a delay of four weeks is recommended for most cases, although recent studies have suggested that performing cardiac surgery within four weeks could be a suitable option for selected cases. The findings of this review are mostly in line with the recommendations of the current European and American infective endocarditis guidelines
Alteration of medial-edge epithelium cell adhesion in two Tgf-β3 null mouse strains
Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf-β3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf-β3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the α5- and β1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-β3 or neutralizing antibodies against fibronectin or the α5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf-β3 null mutants; the importance of TGF-β3 to restore their normal pattern of expression; and the crucial role of fibronectin and the α5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf-β3 null mutant mice
Cyclooxygenase-2 and prostaglandin E<inf>2</inf> signaling through prostaglandin receptor EP- 2 favor the development of myocarditis during acute trypanosoma cruzi infection
Inflammation plays an important role in the pathophysiology of Chagas disease, caused by Trypanosoma cruzi. Prostanoids are regulators of homeostasis and inflammation and are produced mainly by myeloid cells, being cyclooxygenases, COX-1 and COX-2, the key enzymes in their biosynthesis from arachidonic acid (AA). Here, we have investigated the expression of enzymes involved in AA metabolism during T. cruzi infection. Our results show an increase in the expression of several of these enzymes in acute T. cruzi infected heart. Interestingly, COX-2 was expressed by CD68+ myeloid heart-infiltrating cells. In addition, infiltrating myeloid CD11b+Ly6G- cells purified from infected heart tissue express COX-2 and produce prostaglandin E2 (PGE2) ex vivo. T. cruzi infections in COX-2 or PGE2- dependent prostaglandin receptor EP-2 deficient mice indicate that both, COX-2 and EP-2 signaling contribute significantly to the heart leukocyte infiltration and to the release of chemokines and inflammatory cytokines in the heart of T. cruzi infected mice. In conclusion, COX-2 plays a detrimental role in acute Chagas disease myocarditis and points to COX-2 as a potential target for immune intervention.This work was supported by (NG) grants from “Fondo de Investigaciones Sanitarias” (PS09/00538 and PI12/00289); “Universidad Autónoma de Madrid” and “Comunidad de Madrid” (CC08-UAM/SAL-4440/08); by (MF) grants from “Ministerio de Ciencia e Innovación” (SAF2010-17833); “Red de Investigación de Centros de Enfermedades Tropicales” (RICET RD12/0018/0004); European Union (HEALTH-FE-2008-22303, ChagasEpiNet); AECID Cooperation with Argentine (A/025417/09 and A/031735/10), Comunidad de Madrid (S-2010/BMD- 2332) and “Fundación Ramón Areces”. NAG was recipient of a ISCIII Ph.D. fellowship financed by the Spanish “Ministerio de Sanidad”. CCM and HC were recipients of contracts from SAF2010-17833 and PI060388, respectively.Peer Reviewe
Antiepileptic drugs’ tolerability and safety – a systematic review and meta-analysis of adverse effects in dogs
<p>Various anti-epileptic drugs (AEDs) are used for the management of idiopathic epilepsy (IE) in dogs. Their safety profile is an important consideration for regulatory bodies, owners and prescribing clinicians. However, information on their adverse effects still remains limited with most of it derived from non-blinded non-randomized uncontrolled trials and case reports.</p><p><span>This poster won third place, which was presented at the Veterinary Evidence Today conference, Edinburgh November 1-3, 2016. </span></p><br /> <img src="https://www.veterinaryevidence.org/rcvskmod/icons/oa-icon.jpg" alt="Open Access" /
The Receptor Slamf1 on the Surface of Myeloid Lineage Cells Controls Susceptibility to Infection by Trypanosoma cruzi
Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease, causes severe myocarditis often resulting in death. Here, we report that Slamf1−/− mice, which lack the hematopoietic cell surface receptor Slamf1, are completely protected from an acute lethal parasite challenge. Cardiac damage was reduced in Slamf1−/− mice compared to wild type mice, infected with the same doses of parasites, as a result of a decrease of the number of parasites in the heart even the parasitemia was only marginally less. Both in vivo and in vitro experiments reveal that Slamf1-defIcient myeloid cells are impaired in their ability to replicate the parasite and show altered production of cytokines. Importantly, IFN-γ production in the heart of Slamf1 deficient mice was much lower than in the heart of wt mice even though the number of infiltrating dendritic cells, macrophages, CD4 and CD8 T lymphocytes were comparable. Administration of an anti-Slamf1 monoclonal antibody also reduced the number of parasites and IFN-γ in the heart. These observations not only explain the reduced susceptibility to in vivo infection by the parasite, but they also suggest human Slamf1 as a potential target for therapeutic target against T. cruzi infection
Risk propensity in the foreign direct investment location decision of emerging multinationals
A distinguishing feature of emerging economy multinationals is their apparent tolerance for host country institutional risk. Employing behavioral decision theory and quasi-experimental data, we find that managers’ domestic experience satisfaction increases their relative risk propensity regarding controllable risk (legally protectable loss), but decreases their tendency to accept non-controllable risk (e.g., political instability). In contrast, firms’ potential slack reduces relative risk propensity regarding controllable risk, yet amplifies the tendency to take non-controllable risk. We suggest that these counterbalancing effects might help explain observation that risk-taking in FDI location decisions is influenced by firm experience and context. The study provides a new understanding of why firms exhibit heterogeneous responses to host country risks, and the varying effects of institutions
- …