444 research outputs found

    Rapid genotyping of the human renin (REN) gene by the LightCycler® instrument: Identification of unexpected nucleotide substitutions within the selected hybridization probe area

    Get PDF
    Preeclampsia is a serious disorder affecting nearly 3% of all in the Western world. It is associated with hypertension and proteinuria, and several lines of evidence suggest that the renin-angiotensin system (RAS) may be involved in the development of hypertension at different stages of a preeclamptic pregnancy. In this study, we developed rapid genotyping assays on the LightCycler® instrument to allow the detection of genetic variants in the renin gene (REN) that may predispose to preeclampsia. The method is based on real-time PCR and allele-specific hybridization probes, followed by fluorescent melting curve analysis to expose a change in melting temperature (Tm). Ninety-two mother-father-child triads (n=276) from preeclamptic pregnancies were genotyped for three haplotype-tagging single nucleotide polymorphisms (htSNPs) in REN. All three htSNPs (rs5705, rs1464816 and rs3795575) were successfully genotyped. Furthermore, two unexpected nucleotide substitutions (rs11571084 and rs61757041) were identified within the selected hybridization probe area of rs1464816 and rs3795575 due to aberrant melting peaks. In conclusion, genotyping on the LightCycler® instrument proved to be rapid and highly reproducible. The ability to uncover additional nucleotide substitutions is particularly important in that it allows the identification of potentially etiological variants that might otherwise be overlooked by other genotyping methods.publishedVersio

    Impedance matching in photonic crystal microcavities for Second Harmonic Generation

    Full text link
    By numerically integrating the three-dimensional Maxwell equations in the time domain with reference to a dispersive quadratically nonlinear material, we study second harmonic generation in planar photonic crystal microresonators. The proposed scheme allows efficient coupling of the pump radiation to the defect resonant mode. The out-coupled generated second harmonic is maximized by impedance matching the photonic crystal cavity to the output waveguide.Comment: 4 pages, 4 figures. To be published in Optics Letter

    Evolution and dispersal of mitochondrial DNA haplogroup U5 in Northern Europe: insights from an unsupervised learning approach to phylogeography

    Get PDF
    Background We combined an unsupervised learning methodology for analyzing mitogenome sequences with maximum likelihood (ML) phylogenetics to make detailed inferences about the evolution and diversification of mitochondrial DNA (mtDNA) haplogroup U5, which appears at high frequencies in northern Europe. Methods Haplogroup U5 mitogenome sequences were gathered from GenBank. The hierarchal Bayesian Analysis of Population Structure (hierBAPS) method was used to generate groups of sequences that were then projected onto a rooted maximum likelihood (ML) phylogenetic tree to visualize the pattern of clustering. The haplogroup statuses of the individual sequences were assessed using Haplogrep2. Results A total of 23 hierBAPS groups were identified, all of which corresponded to subclades defined in Phylotree, v.17. The hierBAPS groups projected onto the ML phylogeny accurately clustered all haplotypes belonging to a specific haplogroup in accordance with Haplogrep2. By incorporating the geographic source of each sequence and subclade age estimates into this framework, inferences about the diversification of U5 mtDNAs were made. Haplogroup U5 has been present in northern Europe since the Mesolithic, and spread in both eastern and western directions, undergoing significant diversification within Scandinavia. A review of historical and archeological evidence attests to some of the population interactions contributing to this pattern. Conclusions The hierBAPS algorithm accurately grouped mitogenome sequences into subclades in a phylogenetically robust manner. This analysis provided new insights into the phylogeographic structure of haplogroup U5 diversity in northern Europe, revealing a detailed perspective on the diversity of subclades in this region and their distribution in Scandinavian populations.publishedVersio

    Cross-fitted instrument: A blueprint for one-sample Mendelian randomization

    Get PDF
    Bias from weak instruments may undermine the ability to estimate causal effects in instrumental variable regression (IVR). We present here a new approach to handling weak instrument bias through the application of a new type of instrumental variable coined ‘Cross-Fitted Instrument’ (CFI). CFI splits the data at random and estimates the impact of the instrument on the exposure in each partition. These estimates are then used to perform an IVR on each partition. We adapt CFI to the Mendelian randomization (MR) setting and term this adaptation ‘Cross-Fitting for Mendelian Randomization’ (CFMR). We show that, even when using weak instruments, CFMR is, at worst, biased towards the null, which makes it a conservative one-sample MR approach. In particular, CFMR remains conservative even when the two samples used to perform the MR analysis completely overlap, whereas current state-of-the-art approaches (e.g., MR RAPS) display substantial bias in this setting. Another major advantage of CFMR lies in its use of all of the available data to select genetic instruments, which maximizes statistical power, as opposed to traditional two-sample MR where only part of the data is used to select the instrument. Consequently, CFMR is able to enhance statistical power in consortia-led meta-analyses by enabling a conservative one-sample MR to be performed in each cohort prior to a meta-analysis of the results across all the cohorts. In addition, CFMR enables a cross-ethnic MR analysis by accounting for ethnic heterogeneity, which is particularly important in meta-analyses where the participating cohorts may have different ethnicities. To our knowledge, none of the current MR approaches can account for such heterogeneity. Finally, CFMR enables the application of MR to exposures that are either rare or difficult to measure, which would normally preclude their analysis in the regular two-sample MR setting.publishedVersio

    Parent-of-origin-environment interactions in case-parent triads with or without independent controls

    Get PDF
    With case–parent triad data, one can frequently deduce parent of origin of the child's alleles. This allows a parent‐of‐origin (PoO) effect to be estimated as the ratio of relative risks associated with the alleles inherited from the mother and the father, respectively. A possible cause of PoO effects is DNA methylation, leading to genomic imprinting. Because environmental exposures may influence methylation patterns, gene–environment interaction studies should be extended to allow for interactions between PoO effects and environmental exposures (i.e., PoOxE). One should thus search for loci where the environmental exposure modifies the PoO effect. We have developed an extensive framework to analyze PoOxE effects in genome‐wide association studies (GWAS), based on complete or incomplete case–parent triads with or without independent control triads. The interaction approach is based on analyzing triads in each exposure stratum using maximum likelihood estimation in a log‐linear model. Interactions are then tested applying a Wald‐based posttest of parameters across strata. Our framework includes a complete setup for power calculations. We have implemented the models in the R software package Haplin. To illustrate our PoOxE test, we applied the new methodology to top hits from our previous GWAS, assessing whether smoking during the periconceptional period modifies PoO effects on cleft palate only.publishedVersio

    Maternal angiotensinogen (AGT) haplotypes, fetal renin (REN) haplotypes and risk of preeclampsia; estimation of gene-gene interaction from family-triad data

    Get PDF
    Background Preeclampsia is a debilitating disorder affecting approximately 3% of pregnant women in the Western world. Although inconclusive, current evidence suggests that the renin-angiotensin system may be involved in hypertension. Therefore, our objective was to determine whether the genes for placental renin (REN) and maternal angiotensinogen (AGT) interact to influence the risk of preeclampsia. Methods Three haplotype-tagging SNPs (htSNPs) covering REN (rs5705, rs1464818, and rs3795575) and another three covering AGT (rs2148582, rs2478545 and rs943580) were genotyped in 99 mother-father-child triads of preeclampsia pregnancies. We estimated relative risks (RR) conferred by maternal AGT and fetal REN haplotypes using HAPLIN, a statistical software designed to detect multi-marker transmission distortion among triads. To assess a combined effect of maternal AGT and fetal REN haplotypes, the preeclamptic triads were first stratified by presence/absence of maternal AGT haplotype C-T-A and tested for an effect of fetal REN across these strata. Results We found evidence that mothers carrying the most frequent AGT haplotype, C-T-A, had a reduced risk of preeclampsia (RR of 0.4, 95% CI = 0.2-0.8 for heterozygotes and 0.6, 95% CI = 0.2-1.5 for homozygotes). Mothers homozygous for AGT haplotypes t-c-g and C-c-g appeared to have a higher risk, but only the former was statistically significant. We found only weak evidence of an overall effect of fetal REN haplotypes and no support for our hypothesis that an effect of REN depended on whether the mother carried the C-T-A haplotype of AGT (p = 0.33). Conclusion Our findings indicate that the mother's AGT haplotypes affect her risk for developing preeclampsia. However, this risk is not influenced by fetal REN haplotypes.publishedVersio

    A fast wavelet-based functional association analysis replicates several susceptibility loci for birth weight in a Norwegian population

    Get PDF
    Background Birth weight (BW) is one of the most widely studied anthropometric traits in humans because of its role in various adult-onset diseases. The number of loci associated with BW has increased dramatically since the advent of whole-genome screening approaches such as genome-wide association studies (GWASes) and meta-analyses of GWASes (GWAMAs). To further contribute to elucidating the genetic architecture of BW, we analyzed a genotyped Norwegian dataset with information on child’s BW (N=9,063) using a slightly modified version of a wavelet-based method by Shim and Stephens (2015) called WaveQTL. Results WaveQTL uses wavelet regression for regional testing and offers a more flexible functional modeling framework compared to conventional GWAS methods. To further improve WaveQTL, we added a novel feature termed “zooming strategy” to enhance the detection of associations in typically small regions. The modified WaveQTL replicated five out of the 133 loci previously identified by the largest GWAMA of BW to date by Warrington et al. (2019), even though our sample size was 26 times smaller than that study and 18 times smaller than the second largest GWAMA of BW by Horikoshi et al. (2016). In addition, the modified WaveQTL performed better in regions of high LD between SNPs. Conclusions This study is the first adaptation of the original WaveQTL method to the analysis of genome-wide genotypic data. Our results highlight the utility of the modified WaveQTL as a complementary tool for identifying loci that might escape detection by conventional genome-wide screening methods due to power issues. An attractive application of the modified WaveQTL would be to select traits from various public GWAS repositories to investigate whether they might benefit from a second analysis.publishedVersio

    Modelling of photonic wire Bragg Gratings

    No full text
    Some important properties of photonic wire Bragg grating structures have been investigate. The design, obtained as a generalisation of the full-width gap grating, has been modelled using 3D finite-difference time-domain simulations. Different types of stop-band have been observed. The impact of the grating geometry on the lowest order (longest wavelength) stop-band has been investigated - and has identified deeply indented configurations where reduction of the stop-bandwidth and of the reflectivity occurred. Our computational results have been substantially validated by an experimental demonstration of the fundamental stop-band of photonic wire Bragg gratings fabricated on silicon-on-insulator material. The accuracy of two distinct 2D computational models based on the effective index method has also been studied - because of their inherently much greater rapidity and consequent utility for approximate initial designs. A 2D plan-view model has been found to reproduce a large part of the essential features of the spectral response of full 3D models
    corecore