447 research outputs found
Complex Kerr Geometry and Nonstationary Kerr Solutions
In the frame of the Kerr-Schild approach, we consider the complex structure
of Kerr geometry which is determined by a complex world line of a complex
source. The real Kerr geometry is represented as a real slice of this complex
structure. The Kerr geometry is generalized to the nonstationary case when the
current geometry is determined by a retarded time and is defined by a
retarded-time construction via a given complex world line of source. A general
exact solution corresponding to arbitrary motion of a spinning source is
obtained. The acceleration of the source is accompanied by a lightlike
radiation along the principal null congruence. It generalizes to the rotating
case the known Kinnersley class of "photon rocket" solutions.Comment: v.3, revtex, 16 pages, one eps-figure, final version (to appear in
PRD), added the relation to twistors and algorithm of numerical computations,
English is correcte
Magnetic Fields in the Milky Way
This chapter presents a review of observational studies to determine the
magnetic field in the Milky Way, both in the disk and in the halo, focused on
recent developments and on magnetic fields in the diffuse interstellar medium.
I discuss some terminology which is confusingly or inconsistently used and try
to summarize current status of our knowledge on magnetic field configurations
and strengths in the Milky Way. Although many open questions still exist, more
and more conclusions can be drawn on the large-scale and small-scale components
of the Galactic magnetic field. The chapter is concluded with a brief outlook
to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media",
eds. E.M. de Gouveia Dal Pino and A. Lazaria
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
Measurement-based quantum foundations
I show that quantum theory is the only probabilistic framework that permits
arbitrary processes to be emulated by sequences of local measurements. This
supports the view that, contrary to conventional wisdom, measurement should not
be regarded as a complex phenomenon in need of a dynamical explanation but
rather as a primitive -- and perhaps the only primitive -- operation of the
theory.Comment: 8 pages, version to appear in Found. Phy
Prospects for Studies of Stellar Evolution and Stellar Death in the JWST Era
I review the prospects for studies of the advanced evolutionary stages of
low-, intermediate- and high-mass stars by the JWST and concurrent facilities,
with particular emphasis on how they may help elucidate the dominant
contributors to the interstellar dust component of galaxies. Observations
extending from the mid-infrared to the submillimeter can help quantify the
heavy element and dust species inputs to galaxies from AGB stars. JWST's MIRI
mid-infrared instrument will be so sensitive that observations of the dust
emission from individual intergalactic AGB stars and planetary nebulae in the
Virgo Cluster will be feasible. The Herschel Space Observatory will enable the
last largely unexplored spectral region, the far-IR to the submillimeter, to be
surveyed for new lines and dust features, while SOFIA will cover the wavelength
gap between JWST and Herschel, a spectral region containing important fine
structure lines, together with key water-ice and crystalline silicate bands.
Spitzer has significantly increased the number of Type II supernovae that have
been surveyed for early-epoch dust formation but reliable quantification of the
dust contributions from massive star supernovae of Type II, Type Ib and Type Ic
to low- and high-redshift galaxies should come from JWST MIRI observations,
which will be able to probe a volume over 1000 times larger than Spitzer.Comment: 24 pages, 19 figures. To appear in `Astrophysics in the Next Decade:
JWST and Concurrent Facilities' (JWST Conference Proceedings), edited by H.
A. Thronson, M. Stiavelli and A. G. G. M. Tielens; Springer Series:
Astrophysics and Space Science Proceeding
Tetracycline: production, waste treatment and environmental impact assessment
The frequent occurrence of pharmaceuticals in the aquatic environment requires an assessment of their environmental impact and their negative effects in humans. Among the drugs with high harmful potential to the environment are the antibiotics that reach the environment not only, as may be expected, through the effluents from chemical and pharmaceutical industries, but mainly through the sewage and livestock; because around 25 to 75% of the ingested drugs are excreted in unchanged form after the passage through the Gastro-Intestinal Tract. Tetracycline has high world consumption, representing a human consumption of about 23 kg/day in Brazil in 2007. At the moment, researches are being made to develop new tetracycline that incorporate heavy metals (Hg, Cd, Re, Pt, Pd) to their structures in order to increase their bactericidal effect. The conventional wastewater treatment plants are not able to degrade complex organic molecules to reduce their toxicity and improve their biodegradability. For this reason new technologies, i.e., the advanced oxidation processes, are being developed to handle this demand. The objectives of this study are to review the literature on the processes of obtaining tetracycline, presenting its waste treatment methods and evaluation of their environmental impact
The design, construction, and commissioning of the KATRIN experiment
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns
- …