In the frame of the Kerr-Schild approach, we consider the complex structure
of Kerr geometry which is determined by a complex world line of a complex
source. The real Kerr geometry is represented as a real slice of this complex
structure. The Kerr geometry is generalized to the nonstationary case when the
current geometry is determined by a retarded time and is defined by a
retarded-time construction via a given complex world line of source. A general
exact solution corresponding to arbitrary motion of a spinning source is
obtained. The acceleration of the source is accompanied by a lightlike
radiation along the principal null congruence. It generalizes to the rotating
case the known Kinnersley class of "photon rocket" solutions.Comment: v.3, revtex, 16 pages, one eps-figure, final version (to appear in
PRD), added the relation to twistors and algorithm of numerical computations,
English is correcte