32 research outputs found

    Temporal artery temperature measurements versus bladder temperature in critically ill patients, a prospective observational study

    Get PDF
    PurposeAccurate measurement of body temperature is important for the timely detection of fever or hypothermia in critically ill patients. In this prospective study, we evaluated whether the agreement between temperature measurements obtained with TAT (test method) and bladder catheter-derived temperature measurements (BT; reference method) is sufficient for clinical practice in critically ill patients.MethodsPatients acutely admitted to the Intensive Care Unit were included. After BT was recorded TAT measurements were performed by two independent researchers (TAT1; TAT2). The agreement between TAT and BT was assessed using Bland-Altman plots. Clinical acceptable limits of agreement (LOA) were defined a priori (ResultsIn total, 90 critically ill patients (64 males; mean age 62 years) were included. The observed mean difference (TAT-BT; ±SD, 95% LOA) between TAT and BT was 0.12°C (-1.08°C to +1.32°C) for TAT1 and 0.14°C (-1.05°C to +1.33°C) for TAT2. 36% (TAT1) and 42% (TAT2) of all paired measurements failed to meet the acceptable LOA of 0.5°C. Subgroup analysis showed that when patients were receiving intravenous norepinephrine, the measurements of the test method deviated more from the reference method (p = NS).ConclusionThe TAT is not sufficient for clinical practice in critically ill adults

    Non-invasive oscillometric versus invasive arterial blood pressure measurements in critically ill patients:A post hoc analysis of a prospective observational study

    Get PDF
    PURPOSE: The aim was to compare non-invasive blood pressure measurements with invasive blood pressure measurements in critically ill patients. METHODS: Non-invasive blood pressure was measured via automated brachial cuff oscillometry, and simultaneously the radial arterial catheter-derived measurement was recorded as part of a prospective observational study. Measurements of systolic arterial pressure (SAP), diastolic arterial pressure (DAP), and mean arterial pressure (MAP) were compared using Bland-Altman and error grid analyses. RESULTS: Paired measurements of blood pressure were available for 736 patients. Observed mean difference (±SD, 95% limits of agreement) between oscillometrically and invasively measured blood pressure was 0.8 mmHg (±15.7 mmHg, -30.2 to 31.7 mmHg) for SAP, -2.9 mmHg (±11.0 mmHg, -24.5 to 18.6 mmHg) for DAP, and -1.0 mmHg (±10.2 mmHg, -21.0 to 18.9 mmHg) for MAP. Error grid analysis showed that the proportions of measurements in risk zones A to E were 78.3%, 20.7%, 1.0%, 0%, and 0.1% for MAP. CONCLUSION: Non-invasive blood pressure measurements using brachial cuff oscillometry showed large limits of agreement compared to invasive measurements in critically ill patients. Error grid analysis showed that measurement differences between oscillometry and the arterial catheter would potentially have triggered at least low-risk treatment decisions in one in five patients

    WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene

    Get PDF
    Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Skewed X-inactivation is common in the general female population

    Get PDF
    X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants

    Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. Acknowledgements: We especially thank all volunteers who participated in our study. This study made use of data generated by the ‘Genome of the Netherlands’ project, which is funded by the Netherlands Organization for Scientific Research (grant no. 184021007). The data were made available as a Rainbow Project of BBMRI-NL. Samples were contributed by LifeLines (http://lifelines.nl/lifelines-research/general), the Leiden Longevity Study (http://www.healthy-ageing.nl; http://www.langleven.net), the Netherlands Twin Registry (NTR: http://www.tweelingenregister.org), the Rotterdam studies (http://www.erasmus-epidemiology.nl/rotterdamstudy) and the Genetic Research in Isolated Populations programme (http://www.epib.nl/research/geneticepi/research.html#gip). The sequencing was carried out in collaboration with the Beijing Institute for Genomics (BGI). Cardiovascular Health Study: This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, HHSN268200960009C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL105756 and HL103612 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. The CROATIA cohorts would like to acknowledge the invaluable contributions of the recruitment teams in Vis, Korcula and Split (including those from the Institute of Anthropological Research in Zagreb and the Croatian Centre for Global Health at the University of Split), the administrative teams in Croatia and Edinburgh and the people of Vis, Korcula and Split. SNP genotyping was performed at the Wellcome Trust Clinical Research Facility in Edinburgh for CROATIA-Vis, by Helmholtz Zentrum München, GmbH, Neuherberg, Germany for CROATIA-Korcula and by AROS Applied Biotechnology, Aarhus, Denmark for CROATIA-Split. They would also like to thank Jared O’Connell for performing the pre-phasing for all cohorts before imputation. The ERF study as a part of EuroSPAN (European Special Populations Research Network) was supported by European Commission FP-6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the programme ‘Quality of Life and Management of the Living Resources’ of 5th Framework Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by joint grant from the Netherlands Organisation for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). This research was financially supported by BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO 184.021.007). Statistical analyses for the ERF study were carried out on the Genetic Cluster Computer (http://www.geneticcluster.org), which is financially supported by the Netherlands Scientific Organization (NWO 480-05-003 PI: Posthuma) along with a supplement from the Dutch Brain Foundation and the VU University Amsterdam. We are grateful to all study participants and their relatives, general practitioners and neurologists for their contributions and to P. Veraart for her help in genealogy, J. Vergeer for the supervision of the laboratory work and P. Snijders for his help in data collection. The FamHS is funded by a NHLBI grant 5R01HL08770003, and NIDDK grants 5R01DK06833603 and 5R01DK07568102. The Framingham Heart Study SHARe Project for GWAS scan was supported by the NHLBI Framingham Heart Study (Contract No. N01-HC-25195) and its contract with Affymetrix Inc for genotyping services (Contract No. N02-HL-6-4278). DNA isolation and biochemistry were partly supported by NHLBI HL-54776. A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at the Boston University School of Medicine and Boston Medical Center. We are grateful to Han Chen for conducting the 1000G imputation. The Family Heart Study was supported by the by grants R01-HL-087700 and R01-HL-088215 from the National Heart, Lung, and Blood Institute (NHLBI). We would like to acknowledge the invaluable contributions of the families who took part in the Generation Scotland: Scottish Family Health Study, the general practitioners and Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team, which includes academic researchers, IT staff, laboratory technicians, statisticians and research managers. SNP genotyping was performed at the Wellcome Trust Clinical Research Facility in Edinburgh. GS:SFHS is funded by the Scottish Executive Health Department, Chief Scientist Office, grant number CZD/16/6. SNP genotyping was funded by the Medical Research Council, United Kingdom. We wish to acknowledge the services of the LifeLines Cohort Study, the contributing research centres delivering data to LifeLines and all the study participants. MESA Whites and the MESA SHARe project are conducted and supported by contracts N01-HC-95159 through N01-HC-95169 and RR-024156 from the NHLBI. Funding for MESA SHARe genotyping was provided by NHLBI Contract N02.HL.6.4278. MESA Family is conducted and supported in collaboration with MESA investigators; support is provided by grants and contracts R01HL071051, R01HL071205, R01HL071250, R01HL071251, R01HL071252, R01HL071258 and R01HL071259. We thank the participants of the MESA study, the Coordinating Center, MESA investigators and study staff for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org. Netherland Twin Register (NTR) and Netherlands Study of Depression and Anxiety (NESDA): Funding was obtained from the Netherlands Organization for Scientific Research (NWO) and MagW/ZonMW grants Middelgroot-911-09-032, Spinozapremie 56-464-14192, Geestkracht programme of the Netherlands Organization for Health Research and Development (Zon-MW, grant number 10-000-1002), Center for Medical Systems Biology (CSMB, NWO Genomics), NBIC/BioAssist/RK(2008.024), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL, 184.021.007), VU University’s Institute for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam (NCA); the European Science Foundation (ESF, EU/QLRT-2001-01254), the European Community’s Seventh Framework Program (FP7/2007-2013), ENGAGE (HEALTH-F4-2007-201413); the European Science Council (ERC Advanced, 230374); and the European Research Council (ERC-284167). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health, Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995). PREVEND genetics is supported by the Dutch Kidney Foundation (Grant E033), the EU project grant GENECURE (FP-6 LSHM CT 2006 037697), the National Institutes of Health (grant 2R01LM010098), The Netherlands Organisation for Health Research and Development (NWO-Groot grant 175.010.2007.006, NWO VENI grant 916.761.70, ZonMw grant 90.700.441) and the Dutch Inter University Cardiology Institute Netherlands (ICIN). The PROSPER study was supported by an investigator-initiated grant obtained from Bristol-Myers Squibb. J.W.J is an Established Clinical Investigator of the Netherlands Heart Foundation (grant 2001 D 032). Genotyping was supported by the seventh framework programme of the European commission (grant 223004) and by the Netherlands Genomics Initiative (Netherlands Consortium for Healthy Aging grant 050-060-810). The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII) and the Municipality of Rotterdam. We are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project no. 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters for their help in creating the GWAS database.Peer reviewedPublisher PD

    Author Correction:Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function

    Get PDF
    Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article

    De onnauwkeurigheid van de voorhoofdthermometer

    No full text
    Het meten van de lichaamstemperatuur van patiënten is een basisvaardigheid van verpleegkundigen. Zij doen dit veelvuldig. Nauwkeurige meting van de lichaamstemperatuur is belangrijk voor de tijdige detectie van koorts of onderkoeling bij patiënten. Waar lange tijd rectale lichaamstemperatuur- meting de norm was, worden tegenwoordig vaker niet-invasieve instrumenten gebruikt. Het Universitair Medisch Centrum Groningen (UMCG) maakt sinds eind 2018 op alle verpleegafdelingen gebruik van de voorhoofdthermometer om de lichaamstemperatuur te meten. Dit instrument wordt ook wel Temporal Artery Thermometer (TAT) genoemd (zie figuur 1). Sinds de invoering van de TAT hebben verpleegkundigen en artsen twijfels over de nauwkeurigheid van de metingen, maar zij hadden niet de mogelijkheid deze zorgen voldoende te onderbouwen. Dit was voor de intensive care volwassenen (ICV) van het UMCG, in samenwerking met het lectoraat verpleegkundige diagnostiek van de Hanzehogeschool Groningen, aanleiding om een exploratief, vergelijkend cohortonderzoek uit te voeren.

    De onnauwkeurigheid van de voorhoofdthermometer

    Get PDF
    Het meten van de lichaamstemperatuur van patiënten is een basisvaardigheid van verpleegkundigen. Zij doen dit veelvuldig. Nauwkeurige meting van de lichaamstemperatuur is belangrijk voor de tijdige detectie van koorts of onderkoeling bij patiënten. Waar lange tijd rectale lichaamstemperatuur- meting de norm was, worden tegenwoordig vaker niet-invasieve instrumenten gebruikt. Het Universitair Medisch Centrum Groningen (UMCG) maakt sinds eind 2018 op alle verpleegafdelingen gebruik van de voorhoofdthermometer om de lichaamstemperatuur te meten. Dit instrument wordt ook wel Temporal Artery Thermometer (TAT) genoemd (zie figuur 1). Sinds de invoering van de TAT hebben verpleegkundigen en artsen twijfels over de nauwkeurigheid van de metingen, maar zij hadden niet de mogelijkheid deze zorgen voldoende te onderbouwen. Dit was voor de intensive care volwassenen (ICV) van het UMCG, in samenwerking met het lectoraat verpleegkundige diagnostiek van de Hanzehogeschool Groningen, aanleiding om een exploratief, vergelijkend cohortonderzoek uit te voeren.
    corecore