108 research outputs found

    Response of the Jovian thermosphere to a transient ‘pulse’ in solar wind pressure

    Get PDF
    The importance of the Jovian thermosphere with regard to magnetosphere-ionosphere coupling is often neglected in magnetospheric physics. We present the first study to investigate the response of the Jovian thermosphere to transient variations in solar wind dynamic pressure, using an azimuthally symmetric global circulation model coupled to a simple magnetosphere and fixed auroral conductivity model. In our simulations, the Jovian magnetosphere encounters a solar wind shock or rarefaction region and is subsequently compressed or expanded. We present the ensuing response of the coupling currents, thermospheric flows, heating and cooling terms, and the aurora to these transient events. Transient compressions cause the reversal, with respect to steady state, of magnetosphere-ionosphere coupling currents and momentum transfer between the thermosphere and magnetosphere. They also cause at least a factor of two increase in the Joule heating rate. Ion drag significantly changes the kinetic energy of the thermospheric neutrals depending on whether the magnetosphere is compressed or expanded. Local temperature variations appear between View the MathML source for the compression scenario and View the MathML source for the expansion case. Extended regions of equatorward flow develop in the wake of compression events - we discuss the implications of this behaviour for global energy transport. Both compressions and expansions lead to a View the MathML source increase in the total power dissipated or deposited in the thermosphere. In terms of auroral processes, transient compressions increase main oval UV emission by a factor of ∼4.5 whilst transient expansions increase this main emission by a more modest 37%. Both types of transient event cause shifts in the position of the main oval, of up to 1° latitude

    The Nature of Jupiter's Magnetodisk Current System

    Get PDF
    This chapter gives an overview of the properties of the magnetodisk current in the Jovian system. We describe the global morphology of the current sheet embedded in the plasmadisk / magnetodisk and the observational signatures of currents in this structure. We then consider the role of disk currents in force balance and plasmasheet structure in an axisymmetric, rotating system. We also describe the dependence of current density on spatial location, global size of the magnetosphere, and asymmetries plausibly associated with the influence of solar wind. We conclude with a simplified description of the microscopic nature of the particle motions in the magnetospheric plasma, whose collective action produces the currents themselves

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Simulating the effect of centrifugal forces in Jupiter's magnetosphere

    Full text link
    Jupiter's large scale size and rapid planetary rotation period combine to produce the strong centrifugal force responsible for many unique properties of its magnetosphere. It was previously proposed that this centrifugal force and nonadiabatic field line stretching could cause the observed dawn‐dusk asymmetry of Jupiter's plasma sheet, which is thickest near dusk. As flux tubes rotate and stretch between noon and dusk, particles bouncing along the field gain parallel energy and create pressure anisotropy. Because bounce times can be long compared with the outward expansion timescale, particles may respond nonadiabatically, and the resulting pressure anisotropy can drive the plasma sheet to instability. We used a large‐scale kinetic simulation to follow a collection of rotating particles as they move in a time‐varying, rotating magnetic field designed to represent flux tube expansion in Jupiter's magnetosphere. The analysis quantifies the response of trapped particles by characterizing the pressure anisotropy and energy changes. We compare results of nonadiabatic and adiabatic outward expansions and find that the nonadiabatic case leads to a large pitch angle anisotropy and higher total energy than for adiabatic expansion. Although the calculation was not handled fully self‐consistently, the results support the proposition that plasma pressure changes lead to changes in the magnetic field structure with local time. Our findings are consistent with the idea that nonadiabatic effects in Jupiter's magnetosphere contribute to field dipolarization and the observed plasma sheet thickening between noon and dusk. Key Points The centrifugal force accelerates particles during outward flux tube expansion Nonadiabatic flux tube expansion occurs at Jupiter between noon and dusk LT These effects can explain why Jupiter's plasma sheet thickens from 12 to 18 LTPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106869/1/jgra50908.pd

    Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno

    Get PDF
    We present the first comparison of Jupiter's auroral morphology with an extended, continuous and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the interplanetary conditions. We show that for ∼1-3 days following compression region onset the planet's main emission brightened. A duskside poleward region also brightened during compressions, as well as during shallow rarefaction conditions at the start of the program. The power emitted from the noon active region did not exhibit dependence on any interplanetary parameter, though the morphology typically differed between rarefactions and compressions. The auroras equatorward of the main emission brightened over ∼10 days following an interval of increased volcanic activity on Io. These results show that the dependence of Jupiter's magnetosphere and auroras on the interplanetary conditions are more diverse than previously thought

    Ticks Associated with Macquarie Island Penguins Carry Arboviruses from Four Genera

    Get PDF
    Macquarie Island, a small subantarctic island, is home to rockhopper, royal and king penguins, which are often infested with the globally distributed seabird tick, Ixodes uriae. A flavivirus, an orbivirus, a phlebovirus, and a nairovirus were isolated from these ticks and partial sequences obtained. The flavivirus was nearly identical to Gadgets Gully virus, isolated some 30 year previously, illustrating the remarkable genetic stability of this virus. The nearest relative to the orbivirus (for which we propose the name Sandy Bay virus) was the Scottish Broadhaven virus, and provided only the second available sequences from the Great Island orbivirus serogroup. The phlebovirus (for which we propose the name Catch-me-cave virus) and the previously isolated Precarious Point virus were distinct but related, with both showing homology with the Finnish Uukuniemi virus. These penguin viruses provided the second and third available sequences for the Uukuniemi group of phleboviruses. The nairovirus (for which we propose the name Finch Creek virus) was shown to be related to the North American Tillamook virus, the Asian Hazara virus and Nairobi sheep disease virus. Macquarie Island penguins thus harbour arboviruses from at least four of the seven arbovirus-containing genera, with related viruses often found in the northern hemisphere

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF
    corecore