25 research outputs found
Reassessment of the invasion history of two species of Cakile (Brassicaceae) in Australia
In this paper we revisit the invasion history of two species of Cakile in Australia. Cakile edentula subsp. edentula arrived in the mid 19th Century and spread into coastal strandline habitat from the southeast towards the west and to the north; Cakile maritima arrived in the late 19th Century and has replaced Cakile edentula over much of the range. While Cakile edentula is morphologically quite uniform, the great variation within Cakile maritima has confused field ecologists. Using herbarium records we update previous accounts of the spread of the species and report on field surveys that determined their current geographic overlap in Tasmania and in northern New South Wales/southern Queensland. We examine regional morphological variation within Cakile maritima using the national herbaria collections and variation within new population samples. We support previous interpretations that Cakile maritima has been introduced on more than one occasion from morphologically distinct races, resulting in regional variation within Australia and high variability within populations in the south-east. Western Australian populations appear distinct and probably did not initiate those in the east; we consider that eastern populations are likely to be a mix of Cakile maritima subsp. maritima from the Mediterranean and Cakile maritima subsp. integrifolia from Atlantic Europe. Although introgression from Cakile edentula into Cakile maritima cannot be discounted from our results, it is not required to explain the levels of variation in the latter species observed in Australia. Cakile maritima continues to spread southwards in Tasmania and northwards in NSW; in Queenland, a recent occurrence has proliferated in Moreton Bay, spreading slowly to the north but not appreciably southwards
Reviewing research priorities in weed ecology, evolution and management: A horizon scan
Weedy plants pose a major threat to food security, biodiversity, ecosystem services and consequently to human health and wellbeing. However, many currently used weed management approaches are increasingly unsustainable. To address this knowledge and practice gap, in June 2014, 35 weed and invasion ecologists, weed scientists, evolutionary biologists and social scientists convened a workshop to explore current and future perspectives and approaches in weed ecology and management. A horizon scanning exercise ranked a list of 124 pre-submitted questions to identify a priority list of 30 questions. These questions are discussed under seven themed headings that represent areas for renewed and emerging focus for the disciplines of weed research and practice. The themed areas considered the need for transdisciplinarity, increased adoption of integrated weed management and agroecological approaches, better understanding of weed evolution, climate change, weed invasiveness and finally, disciplinary challenges for weed science. Almost all the challenges identified rested on the need for continued efforts to diversify and integrate agroecological, socio-economic and technological approaches in weed management. These challenges are not newly conceived, though their continued prominence as research priorities highlights an ongoing intransigence that must be addressed through a more system-oriented and transdisciplinary research agenda that seeks an embedded integration of public and private research approaches. This horizon scanning exercise thus set out the building blocks needed for future weed management research and practice; however, the challenge ahead is to identify effective ways in which sufficient research and implementation efforts can be directed towards these needs
Seasonal timing of inundation affects riparian plant growth and flowering: Implications for riparian vegetation composition
Changes to the timing of peak river flows caused by flow regulation affect riparian vegetation composition, but the mechanisms driving such vegetation changes are not well understood. We investigated experimentally the effects of timing of inundation on riparian plant growth and flowering. We collected 168 sods from 14 sites across five lowland rivers in south-eastern Australia. Plant cover and flowering within the sods were surveyed each season for a year. During this period, sods were inundated for 6 weeks in either early spring or in summer. Terrestrial plant taxa (which included most exotic species) senesced in response to inundation, regardless of its timing. In contrast, native amphibious species (particularly amphibious forbs) responded favourably to inundation in spring, but were unaffected by inundation in summer. Native and exotic emergent macrophytes responded favourably to inundation regardless of timing, and flowered frequently in both the spring- and the summer-inundation treatments. In contrast, many native annuals flowered only in the spring-inundation treatment, while more exotic grasses flowered in the summer-inundation treatment. In temperate climates, inundation in early spring followed by non-flooded conditions is likely to be important for promoting the growth of amphibious forbs and the recruitment and flowering of riparian annuals. Without inundation in spring, many terrestrial exotic weeds may flourish and set seed prior to any subsequent inundation (e. g. in summer). We contend that natural seasonal timing (i. e. winter-early spring) of flow peaks is important for the maintenance of native riverbank vegetation and reducing the extent of terrestrial exotic species within the riparian zone. © 2012 Springer Science+Business Media Dordrecht
Data from: Why we do not expect dispersal probability density functions based on a single mechanism to fit real seed shadows
Bullock et al. (Journal of Ecology 105:6-19, 2017) have suggested that the theory behind the Wald Analytical Long Distance (WALD) model for wind dispersal from a point source needs to be re-examined. This is on the basis that an inverse Gaussian probability density function (pdf) does not provide the best fit to seed shadows around individual source plants known to be dispersed by wind.
We present two reasons why we would not necessarily expect any of the standard mechanistically derived pdfs to fit real seed shadows any better than empirical functions.
Firstly, the derivation of “off-the-shelf” pdfs such as the Gaussian, exponential and inverse Gaussian involves only one of the processes and factors that together generate a real seed shadow. It is implausible to expect that a single-process model, no matter how sophisticated in detail, will capture the behaviour of an entire, complex system, which may involve a number of sequential random processes, or a superposition of parallel random processes, or both.
Secondly, even if there is only one process involved and we have a perfect model for that process, the basic parameters of the model would be difficult to pin down precisely. Moreover, these parameters are unlikely to remain constant over a dispersal season, so that effectively we observe the outcome of a linear combination of dispersal events with different parameter values, constituting a form of averaging over the parameters of the distribution. Simple examples show that averaging a pdf over its parameters can lead to a pdf from an entirely different class.
Synthesis. The failure of the inverse Gaussian model to fit seed shadow data is not in itself a reason to doubt the validity of the Wald Analytical Long Distance model for movement of particles through the air under specified environmental conditions. A greater awareness is needed of the differences between the Wald Analytical Long Distance and the inverse Gaussian (or Wald) and the purposes for which they are used. The complexity of dispersing populations of seeds means that any of the standard mechanistically derived pdfs will actually be merely empirical in this context. Shape and flexibility of a pdf is far more important for adequately describing data than some perceived higher status
How to be a good neighbour: Facilitation and competition between two co-flowering species.
Empirical evidence suggests that co-flowering species can facilitate each other through shared pollinators. However, the extent to which one co-flowering species can relieve pollination limitation of another while simultaneously competing for abiotic resource has rarely been examined. Using a deterministic model we explored the demographic outcome for one ("focal") species of its co-occurrence with a species that shares pollinators and competes for both pollinator visitation and abiotic resources. In this paper we showed how the overall impact can be positive or negative, depending on the balance between enhanced fertilization versus increased competition. Our model could predict the density of co-flowering species that will maximize the pollination rate of the focal species by attracting pollinators. Because that density will also give rise to competitive effects, a lower density of co-flowering species is required for optimizing the trade-off between enhanced fertilization and competition so as to give the maximum possible facilitation of reproduction in the focal species. Results were qualitatively different when we considered attractiveness of the co-flowering species, as opposed to its density, because attractiveness, unlike density, had no effect on competition for abiotic resources. Whereas unattractive neighbours would not bring in pollinators, very attractive neighbours would captivate pollinators, not sharing them with the focal species. Thus optimal benefit to the focal species came at intermediate levels of attractiveness in the co-flowering species. This intermediate level of attractiveness in co-flowering species simultaneously maximized pollination and overall facilitation of reproduction for the focal species. The likelihood of facilitation was predicted to decline with the selfing rate of the focal species, revealing an indirect cost for an inbreeding mating system. Whether a co-flowering species can be facilitative depends on the way pollinators respond to the plant density: only a Type III functional response for visitation rate can result in facilitation. Our model provided both a conceptual framework and precise quantitative measures for determining the impacts of a neighbouring co-flowering species on reproduction