43 research outputs found
Assessment of brain age in posttraumatic stress disorder: Findings from the ENIGMA PTSD and brain age working groups
Background: Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. Method: Adult subjects (N = 2229; 56.2% male) aged 18–69 years (mean = 35.6, SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (n = 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age − chronological age) controlling for chronological age, sex, and scan site. Results: BrainageR most accurately predicted brain age in a subset (n = 386) of controls (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62, MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. Discussion: Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan
Neuroimaging-Based Classification of PTSD Using Data-Driven Computational Approaches:A Multisite Big Data Study from the ENIGMA-PGC PTSD Consortium
BACKGROUND: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group.METHODS: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality.RESULTS: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60% test AUC for s-MRI, 59% for rs-fMRI and 56% for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75% AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance.CONCLUSION: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.</p
Assessment of Brain Age in Posttraumatic Stress Disorder: Findings from the ENIGMA PTSD and Brain Age Working Groups
Background
Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. Method
Adult subjects (N = 2229; 56.2% male) aged 18–69 years (mean = 35.6, SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (n = 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age − chronological age) controlling for chronological age, sex, and scan site. Results
BrainageR most accurately predicted brain age in a subset (n = 386) of controls (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62, MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. Discussion
Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan
A Comparison of Methods to Harmonize Cortical Thickness Measurements Across Scanners and Sites
Results of neuroimaging datasets aggregated from multiple sites may be biased by site-specific profiles in participants’ demographic and clinical characteristics, as well as MRI acquisition protocols and scanning platforms. We compared the impact of four different harmonization methods on results obtained from analyses of cortical thickness data: (1) linear mixed-effects model (LME) that models site-specific random intercepts (LME INT), (2) LME that models both site-specific random intercepts and age-related random slopes (LME INT+SLP), (3) ComBat, and (4) ComBat with a generalized additive model (ComBat-GAM). Our test case for comparing harmonization methods was cortical thickness data aggregated from 29 sites, which included 1,340 cases with posttraumatic stress disorder (PTSD) (6.2–81.8 years old) and 2,057 trauma-exposed controls without PTSD (6.3–85.2 years old). We found that, compared to the other data harmonization methods, data processed with ComBat-GAM was more sensitive to the detection of significant case-control differences (Χ 2(3) = 63.704, p < 0.001) as well as case-control differences in age-related cortical thinning (Χ 2(3) = 12.082, p = 0.007). Both ComBat and ComBat-GAM outperformed LME methods in detecting sex differences (Χ 2(3) = 9.114, p = 0.028) in regional cortical thickness. ComBat-GAM also led to stronger estimates of age-related declines in cortical thickness (corrected p-values < 0.001), stronger estimates of case-related cortical thickness reduction (corrected p-values < 0.001), weaker estimates of age-related declines in cortical thickness in cases than controls (corrected p-values < 0.001), stronger estimates of cortical thickness reduction in females than males (corrected p-values < 0.001), and stronger estimates of cortical thickness reduction in females relative to males in cases than controls (corrected p-values < 0.001). Our results support the use of ComBat-GAM to minimize confounds and increase statistical power when harmonizing data with non-linear effects, and the use of either ComBat or ComBat-GAM for harmonizing data with linear effects
Altered lateralization of the cingulum in deployment-related traumatic brain injury: An ENIGMA military-relevant brain injury study
Traumatic brain injury (TBI) in military populations can cause disruptions in brain structure and function, along with cognitive and psychological dysfunction. Diffusion magnetic resonance imaging (dMRI) can detect alterations in white matter (WM) microstructure, but few studies have examined brain asymmetry. Examining asymmetry in large samples may increase sensitivity to detect heterogeneous areas of WM alteration in mild TBI. Through the Enhancing Neuroimaging Genetics Through Meta-Analysis Military-Relevant Brain Injury working group, we conducted a mega-analysis of neuroimaging and clinical data from 16 cohorts of Active Duty Service Members and Veterans (n = 2598). dMRI data were processed together along with harmonized demographic, injury, psychiatric, and cognitive measures. Fractional anisotropy in the cingulum showed greater asymmetry in individuals with deployment-related TBI, driven by greater left lateralization in TBI. Results remained significant after accounting for potentially confounding variables including posttraumatic stress disorder, depression, and handedness, and were driven primarily by individuals whose worst TBI occurred before age 40. Alterations in the cingulum were also associated with slower processing speed and poorer set shifting. The results indicate an enhancement of the natural left laterality of the cingulum, possibly due to vulnerability of the nondominant hemisphere or compensatory mechanisms in the dominant hemisphere. The cingulum is one of the last WM tracts to mature, reaching peak FA around 42 years old. This effect was primarily detected in individuals whose worst injury occurred before age 40, suggesting that the protracted development of the cingulum may lead to increased vulnerability to insults, such as TBI
Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder:Results from the ENIGMA-PGC PTSD Consortium
BACKGROUND: Posttraumatic stress disorder (PTSD) is accompanied by disrupted cortical neuroanatomy. We investigated alteration in covariance of structural networks associated with PTSD in regions that demonstrate the case-control differences in cortical thickness (CT) and surface area (SA). METHODS: Neuroimaging and clinical data were aggregated from 29 research sites in >1,300 PTSD cases and >2,000 trauma-exposed controls (age 6.2-85.2 years) by the ENIGMA-PGC PTSD working group. Cortical regions in the network were rank-ordered by effect size of PTSD-related cortical differences in CT and SA. The top-n (n = 2 to 148) regions with the largest effect size for PTSD > non-PTSD formed hypertrophic networks, the largest effect size for PTSD < non-PTSD formed atrophic networks, and the smallest effect size of between-group differences formed stable networks. The mean structural covariance (SC) of a given n-region network was the average of all positive pairwise correlations and was compared to the mean SC of 5,000 randomly generated n-region networks. RESULTS: Patients with PTSD, relative to non-PTSD controls, exhibited lower mean SC in CT-based and SA-based atrophic networks. Comorbid depression, sex and age modulated covariance differences of PTSD-related structural networks. CONCLUSIONS: Covariance of structural networks based on CT and cortical SA are affected by PTSD and further modulated by comorbid depression, sex, and age. The structural covariance networks that are perturbed in PTSD comport with converging evidence from resting state functional connectivity networks and networks impacted by inflammatory processes, and stress hormones in PTSD
Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup
Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p
Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup
Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder