50 research outputs found

    Toll-like Receptor 3 L412F Polymorphism Promotes a Persistent Clinical Phenotype in Pulmonary Sarcoidosis

    Get PDF
    Background: Sarcoidosis is a multisystemic disorder of unknown etiology, characterised by the presence of non-caseating granulomas in target organs. In ninety percent of cases, there is thoracic involvement. Fifty to seventy percent of pulmonary sarcoidosis patients will experience acute, self-limiting disease. For the subgroup of patients who develop persistent disease, no targeted therapy is currently available. Aim: To investigate the potential of the single nucleotide polymorphism (SNP), Toll-like receptor 3 Leu412Phe (TLR3 L412F; rs3775291), as a causative factor in the development of, and in disease persistence in pulmonary sarcoidosis. To investigate the functionality of TLR3 L412F in vitro in primary human lung fibroblasts from pulmonary sarcoidosis patients. Methods: Cohorts of Irish sarcoidosis patients (n=228), healthy Irish controls (n = 263) and a secondary cohort of American sarcoidosis patients (n=123) were genotyped for TLR3 L412F. Additionally, the effect of TLR3 L412F in primary lung fibroblasts from pulmonary sarcoidosis patients was quantitated following TLR3 activation in the context of cytokine and type I interferon production, TLR3 expression, and apoptotic- and fibroproliferative-responses. Results: We report a significant association between TLR3 L412F and persistent clinical disease in two cohorts of Irish and American Caucasians with pulmonary sarcoidosis. Furthermore, activation of TLR3 in primary lung fibroblasts from 412F-homozygous pulmonary sarcoidosis patients resulted in reduced IFN-â and TLR3 expression, reduced apoptosis- and dysregulated fibroproliferative-responses compared with TLR3 wild-type patients. Conclusions: This study identifies defective TLR3 function as a previously unidentified factor in persistent clinical disease in pulmonary sarcoidosis and reveals TLR3 L412F as a candidate biomarker

    Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections

    Get PDF
    Dose response in micro-parasite infections is usually shallower than predicted by the independent action model, which assumes that each infectious unit has a probability of infection that is independent of the presence of other infectious units. Moreover, the prevalence of mixed-genotype infections was greater than predicted by this model. No probabilistic infection model has been proposed to account for the higher prevalence of mixed-genotype infections. We use model selection within a set of four alternative models to explain high prevalence of mixed-genotype infections in combination with a shallow dose response. These models contrast dependent versus independent action of micro-parasite infectious units, and homogeneous versus heterogeneous host susceptibility. We specifically consider a situation in which genome differences between genotypes are minimal, and highly unlikely to result in genotype-genotype interactions. Data on dose response and mixed-genotype infection prevalence were collected by challenging fifth instar Spodoptera exigua larvae with two genotypes of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), differing only in a 100 bp PCR marker sequence. We show that an independent action model that includes heterogeneity in host susceptibility can explain both the shallow dose response and the high prevalence of mixed-genotype infections. Theoretical results indicate that variation in host susceptibility is inextricably linked to increased prevalence of mixed-genotype infections. We have shown, to our knowledge for the first time, how heterogeneity in host susceptibility affects mixed-genotype infection prevalence. No evidence was found that virions operate dependently. While it has been recognized that heterogeneity in host susceptibility must be included in models of micro-parasite transmission and epidemiology to account for dose response, here we show that heterogeneity in susceptibility is also a fundamental principle explaining patterns of pathogen genetic diversity among hosts in a population. This principle has potentially wide implications for the monitoring, modeling and management of infectious diseases

    Meta-analysis of epigenome-wide association studies in newborns and children show widespread sex differences in blood DNA methylation

    Get PDF
    Publisher Copyright: © 2022 The AuthorsBackground: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. Methods: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5–10 years from 8 cohorts (n = 4268). Results: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10−7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10−6) in older children and had methylation differences in the same direction. Conclusions: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.Peer reviewe

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Induced plant defenses, host-pathogen interactions, and forest insect outbreaks

    No full text
    Cyclic outbreaks of defoliating insects devastate forests, but their causes are poorly understood. Outbreak cycles are often assumed to be driven by density-dependent mortality due to natural enemies, because pathogens and predators cause high mortality and because natural-enemy models reproduce fluctuations in defoliation data. The role of induced defenses is in contrast often dismissed, because toxic effects of defenses are often weak and because induced-defense models explain defoliation data no better than natural-enemy models. Natural-enemy models, however, fail to explain gypsy moth outbreaks in North America, in which outbreaks in forests with a higher percentage of oaks have alternated between severe and mild, whereas outbreaks in forests with a lower percentage of oaks have been uniformly moderate. Here we show that this pattern can be explained by an interaction between induced defenses and a natural enemy. We experimentally induced hydrolyzable-tannin defenses in red oak, to show that induction reduces variability in a gypsy moth’s risk of baculovirus infection. Because this effect can modulate outbreak severity and because oaks are the only genus of gypsy moth host tree that can be induced, we extended a natural-enemy model to allow for spatial variability in inducibility. Our model shows alternating outbreaks in forests with a high frequency of oaks, and uniform outbreaks in forests with a low frequency of oaks, matching the data. The complexity of this effect suggests that detecting effects of induced defenses on defoliator cycles requires a combination of experiments and models

    Behavior of a Recombinant Baculovirus in Lepidopteran Hosts with Different Susceptibilities

    No full text
    Insect pathogens, such as baculoviruses, that are used as microbial insecticides have been genetically modified to increase their speed of action. Nontarget species will often be exposed to these pathogens, and it is important to know the consequences of infection in hosts across the whole spectrum of susceptibility. Two key parameters, speed of kill and pathogen yield, are compared here for two baculoviruses, a wild-type Autographa californica nucleopolyhedrovirus (AcNPV), AcNPV clone C6, and a genetically modified AcNPV which expresses an insect-selective toxin, AcNPV-ST3, for two lepidopteran hosts which differ in susceptibility. The pathogenicity of the two viruses was equal in the less-susceptible host, Mamestra brassicae, but the recombinant was more pathogenic than the wild-type virus in the susceptible species, Trichoplusia ni. Both viruses took longer to kill the larvae of M. brassicae than to kill those of T. ni. However, whereas the larvae of T. ni were killed more quickly by the recombinant virus, the reverse was found to be true for the larvae of M. brassicae. Both viruses produced a greater yield in M. brassicae, and the yield of the recombinant was significantly lower than that of the wild type in both species. The virus yield increased linearly with the time taken for the insects to die. However, despite the more rapid speed of kill of the wild-type AcNPV in M. brassicae, the yield was significantly lower for the recombinant virus at any given time to death. A lower yield for the recombinant virus could be the result of a reduction in replication rate. This was investigated by comparing determinations of the virus yield per unit of weight of insect cadaver. The response of the two species (to both viruses) was very different: the yield per unit of weight decreased over time for M. brassicae but increased for T. ni. The implications of these data for risk assessment of wild-type and genetically modified baculoviruses are discussed

    Beyond biological control: non-pest insects and their pathogens in a changing world

    Get PDF
    Over the last few decades there have been considerable advances in the fields of insect pathology and insect conservation but the two disciplines rarely meet. The potential of entomopathogens as biological control agents of pest insects is widely recognized but information on the role of pathogens in insect population regulation, more generally, is limited. For example, the role of pathogens as natural enemies of non-pest insects, including those of conservation value, is seldom considered beyond their context as ‘non-targets’ of microbial control agents. Entomopathogens are prevalent in natural systems and should receive greater attention in life history studies. There is no doubt that viruses, bacteria and fungi are major mortality agents of insects but their significance tends to be overshadowed by the attention given to predators and parasitoids. We highlight the critical function that entomopathogens could have in insect population dynamics with particular reference fragmented habitats as illustrated by the theoretical literature. However, we emphasize that there are few empirical studies to test theoretical predictions. Furthermore, we suggest that since an increase in the incidence of disease is predicted in most environmental change scenarios, it is more important than ever to turn our attention to insect pathology when we consider insect population dynamics
    corecore