72 research outputs found

    Incidence, risk factors and causes of death in an HIV care programme with a large proportion of injecting drug users.

    Get PDF
    Objectives  To identify factors influencing mortality in an HIV programme providing care to large numbers of injecting drug users (IDUs) and patients co-infected with hepatitis C (HCV). Methods  A longitudinal analysis of monitoring data from HIV-infected adults who started antiretroviral therapy (ART) between 2003 and 2009 was performed. Mortality and programme attrition rates within 2 years of ART initiation were estimated. Associations with individual-level factors were assessed with multivariable Cox and piece-wise Cox regression. Results  A total of 1671 person-years of follow-up from 1014 individuals was analysed. Thirty-four percent of patients were women and 33% were current or ex-IDUs. 36.2% of patients (90.8% of IDUs) were co-infected with HCV. Two-year all-cause mortality rate was 5.4 per 100 person-years (95% CI, 4.4-6.7). Most HIV-related deaths occurred within 6 months of ART start (36, 67.9%), but only 5 (25.0%) non-HIV-related deaths were recorded during this period. Mortality was higher in older patients (HR = 2.50; 95% CI, 1.42-4.40 for ≥40 compared to 15-29 years), and in those with initial BMI < 18.5 kg/m(2) (HR = 3.38; 95% CI, 1.82-5.32), poor adherence to treatment (HR = 5.13; 95% CI, 2.47-10.65 during the second year of therapy), or low initial CD4 cell count (HR = 4.55; 95% CI, 1.54-13.41 for <100 compared to ≥100 cells/μl). Risk of death was not associated with IDU status (P = 0.38). Conclusion  Increased mortality was associated with late presentation of patients. In this programme, death rates were similar regardless of injection drug exposure, supporting the notion that satisfactory treatment outcomes can be achieved when comprehensive care is provided to these patients

    Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    Get PDF
    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec is 1014.2 M\sim {10}^{14.2}\ {M}_{\odot }. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is 27076+48{270}_{-76}^{+48} kpc, and that the inner density falls with radius to the power −0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as r1{r}^{-1}. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as r0.8{r}^{-0.8} and r1.0{r}^{-1.0}) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them

    Clinical and cost-effectiveness of contingency management for cannabis use in early psychosis: the CIRCLE randomised clinical trial

    Get PDF
    Background Cannabis is the most commonly used illicit substance among people with psychosis. Continued cannabis use following the onset of psychosis is associated with poorer functional and clinical outcomes. However, finding effective ways of intervening has been very challenging. We examined the clinical and cost-effectiveness of adjunctive contingency management (CM), which involves incentives for abstinence from cannabis use, in people with a recent diagnosis of psychosis. Methods CIRCLE was a pragmatic multi-centre randomised controlled trial. Participants were recruited via Early Intervention in Psychosis (EIP) services across the Midlands and South East of England. They had had at last one episode of clinically diagnosed psychosis (affective or non-affective); were aged 18 to 36; reported cannabis use in at least 12 out of the previous 24 weeks; and were not currently receiving treatment for cannabis misuse, or subject to a legal requirement for cannabis testing. Participants were randomised via a secure web-based service 1:1 to either an experimental arm, involving 12 weeks of CM plus a six-session psychoeducation package, or a control arm receiving the psychoeducation package only. The total potential voucher reward in the CM intervention was £240. The primary outcome was time to acute psychiatric care, operationalised as admission to an acute mental health service (including community alternatives to admission). Primary outcome data were collected from patient records at 18 months post-consent by assessors masked to allocation. The trial was registered with the ISRCTN registry, number ISRCTN33576045. Results: 551 participants were recruited between June 2012 and April 2016. Primary outcome data were obtained for 272 (98%) in the CM (experimental) group and 259 (95%) in the control group. There was no statistically significant difference in time to acute psychiatric care (the primary outcome) (HR 1.03, 95% CI 0.76, 1.40) between groups. By 18 months, 90 (33%) of participants in the CM group, and 85 (30%) of the control groups had been admitted at least once to an acute psychiatric service. Amongst those who had experienced an acute psychiatric admission, the median time to admission was 196 days (IQR 82, 364) in the CM group and 245 days (IQR 99,382) in the control group. Cost-effectiveness analyses suggest that there is an 81% likelihood that the intervention was cost-effective, mainly resulting from higher mean inpatient costs for the control group compared with the CM group, however the cost difference between groups was not statistically significant. There were 58 adverse events, 27 in the CM group and 31 in the control group. Conclusions Overall, these results suggest that CM is not an effective intervention for improving the time to acute psychiatric admission or reducing cannabis use in psychosis, at least at the level of voucher reward offered

    Nuclear Targeting of IGF-1 Receptor in Orbital Fibroblasts from Graves' Disease: Apparent Role of ADAM17

    Get PDF
    Insulin-like growth factor-1 receptor (IGF-1R) comprises two subunits, including a ligand binding domain on extra- cellular IGF-1Rα and a tyrosine phosphorylation site located on IGF-1Rβ. IGF-1R is over-expressed by orbital fibroblasts in the autoimmune syndrome, Graves' disease (GD). When activated by IGF-1 or GD-derived IgG (GD-IgG), these fibroblasts produce RANTES and IL-16, while those from healthy donors do not. We now report that IGF-1 and GD-IgG provoke IGF-1R accumulation in the cell nucleus of GD fibroblasts where it co-localizes with chromatin. Nuclear IGF-1R is detected with anti-IGF-1Rα-specific mAb and migrates to approximately 110 kDa, consistent with its identity as an IGF-1R fragment. Nuclear IGF-1R migrating as a 200 kDa protein and consistent with an intact receptor was undetectable when probed with either anti-IGF-1Rα or anti-IGF-1Rβ mAbs. Nuclear redistribution of IGF-1R is absent in control orbital fibroblasts. In GD fibroblasts, it can be abolished by an IGF-1R-blocking mAb, 1H7 and by physiological concentrations of glucocorticoids. When cell-surface IGF-1R is cross-linked with 125I IGF-1, 125I-IGF-1/IGF-1R complexes accumulate in the nuclei of GD fibroblasts. This requires active ADAM17, a membrane associated metalloproteinase, and the phosphorylation of IGF-1R. In contrast, virally encoded IGF-1Rα/GFP fusion protein localizes equivalently in nuclei in both control and GD fibroblasts. This result suggests that generation of IGF-1R fragments may limit the accumulation of nuclear IGF-1R. We thus identify a heretofore-unrecognized behavior of IGF-1R that appears limited to GD-derived fibroblasts. Nuclear IGF-1R may play a role in disease pathogenesis

    Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars

    Get PDF
    Strong-gravitational lens systems with quadruply imaged quasars (quads) are unique probes to address several fundamental problems in cosmology and astrophysics. Although they are intrinsically very rare, ongoing and planned wide-field deep-sky surveys are set to discover thousands of such systems in the next decade. It is thus paramount to devise a general framework to model strong-lens systems to cope with this large influx without being limited by expert investigator time. We propose such a general modelling framework (implemented with the publicly available software LENSTRONOMY) and apply it to uniformly model three-band Hubble Space Telescope Wide Field Camera 3 images of 13 quads. This is the largest uniformly modelled sample of quads to date and paves the way for a variety of studies. To illustrate the scientific content of the sample, we investigate the alignment between the mass and light distribution in the deflectors. The position angles of these distributions are well-aligned, except when there is strong external shear. However, we find no correlation between the ellipticity of the light and mass distributions. We also show that the observed flux-ratios between the images depart significantly from the predictions of simple smooth models. The departures are strongest in the bluest band, consistent with microlensing being the dominant cause in addition to millilensing. Future papers will exploit this rich data set in combination with ground-based spectroscopy and time delays to determine quantities such as the Hubble constant, the free streaming length of dark matter, and the normalization of the initial stellar mass function

    Macroscopic quantum resonators (MAQRO)

    Get PDF
    Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 10e8 atoms. Under these conditions, deviations due to various suggested alternative models to quantum theory would become visible. These models have been suggested to harmonize the paradoxical quantum phenomena both with the classical macroscopic world and with our notion of Minkowski space-time. The second scientific objective of MAQRO, which is addressed by the experiment CASE, is to demonstrate the performance of a novel type of inertial sensor based on optically trapped microspheres. CASE is a technology demonstrator that shows how the modular design of DECIDE allows to easily incorporate it with other missions that have compatible requirements in terms of spacecraft and orbit. CASE can, at the same time, serve as a test bench for the weak equivalence principle, i.e., the universality of free fall with test-masses differing in their mass by 7 orders of magnitude.Comment: Proposal for a medium-sized space mission, 28 pages, 9 figures - in v2, we corrected some minor mistakes and replaced fig. 9 with a higher-resolution version; Experimental Astronomy, March 2012, Online, Open Acces

    The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign - I. Overview and classification of candidates selected by two techniques

    Get PDF
    The primary goals of the STRong lensing Insights into the Dark Energy Survey (STRIDES) collaboration are to measure the dark energy equation of state parameter and the free streaming length of dark matter. To this aim, STRIDES is discovering strongly lensed quasars in the imaging data of the Dark Energy Survey and following them up to measure time delays, high resolution imaging, and spectroscopy sufficient to construct accurate lens models. In this paper, we first present forecasts for STRIDES. Then, we describe the STRIDES classification scheme, and give an overview of the Fall 2016 follow-up campaign. We continue by detailing the results of two selection methods, the Outlier Selection Technique and a morphological algorithm, and presenting lens models of a system, which could possibly be a lensed quasar in an unusual configuration. We conclude with the summary statistics of the Fall 2016 campaign. Including searches presented in companion papers (Anguita et al.; Ostrovski et al.), STRIDES followed up 117 targets identifying 7 new strongly lensed systems, and 7 nearly identical quasars (NIQs), which could be confirmed as lenses by the detection of the lens galaxy. 76 candidates were rejected and 27 remain otherwise inconclusive, for a success rate in the range 6-35\%. This rate is comparable to that of previous searches like SQLS even though the parent dataset of STRIDES is purely photometric and our selection of candidates cannot rely on spectroscopic information
    corecore