117 research outputs found

    Erosion Mapping of Through-Thickness Toughened Powder Epoxy Gradient Glass-Fiber-Reinforced Polymer (GFRP) Plates for Tidal Turbine Blades

    Get PDF
    Erosion of tidal turbine blades in the marine environment is a major material challenge due to the high thrust and torsional loading at the rotating surfaces, which limits the ability to harness energy from tidal sources. Polymer-matrix composites can exhibit leading-blade edge erosion due to marine flows containing salt and solid particles of sand. Anti-erosion coatings can be used for more ductility at the blade surface, but the discontinuity between the coating and the stiffer composite can be a site of failure. Therefore, it is desirable to have a polymer matrix with a gradient of toughness, with a tougher, more ductile polymer matrix at the blade surface, transitioning gradually to the high stiffness matrix needed to provide high composite mechanical properties. In this study, multiple powder epoxy systems were investigated, and two were selected to manufacture unidirectional glass-fiber-reinforced polymer (UD-GFRP) plates with different epoxy ratios at the surface and interior plies, leading to a toughening gradient within the plate. The gradient plates were then mechanically compared to their standard counterparts. Solid particle erosion testing was carried out at various test conditions and parameters on UD-GFRP specimens in a slurry environment. The experiments performed were based on a model of the UK marine environment for a typical tidal energy farm with respect to the concentration of saltwater and the size of solid particle erodent. The morphologies of the surfaces were examined by SEM. Erosion maps were generated based on the result showing significant differences for materials of different stiffness in such conditions

    The effect of day of emergence from the insect cadaver on the behaviour and environmental tolerances of infective juveniles of the entomopathogenic nematode Heterorhabditis Megidis (Strain UK211)

    Get PDF
    Infective juveniles (Us) of entomopathogenic nematodes (EPNs) are obligate parasites of insect larvae. Inside the host they develop into sexually mature adult stages and complete their life cycle. Two or 3 adult nematode generations can occur in the insect host. The increase in nematode population density in the insect cadaver, together with limiting nutrient conditions, result in the formation of IJs. These IJs emerge into the soil to search for a new host. It typically takes 7-8 days for all Us to emerge from a parasitized insect. We have investigated the effect of the day of emergence of Us from insect cadavers on the environmental tolerance and behavior of the EPN Heterorhabditis megidis strain UK211. The Us that emerge early display good initial host-finding ability and increased temperature tolerance but disperse poorly and have poor tolerance to desiccation. Conversely, the IJs that emerge later display poor initial host-finding ability and poor temperature tolerance but they disperse well and possess increased desiccation tolerance. These phenotypic differences are likely to facilitate early-emerging Us in locating and infecting hosts in the vicinity of the cadaver, whereas IJs that emerge late are adapted to disperse away from their natal cadaver. We hypothesize that adaptive phenotypic plasticity rather than allelic variability may provide the genetic basis for the different physiological and behavioral phenotypes of the early- and late-emerging IJs

    A Plasmodium falciparum S33 proline aminopeptidase is associated with changes in erythrocyte deformability

    Get PDF
    Infection with the apicomplexan parasite Plasmodium falciparum is a major cause of morbidity and mortality worldwide. One of the Striking features of this parasite is its ability to remodel and decrease the deformability of host red blood cells, a process that contributes to disease. To further understand the virulence of Pf we investigated the biochemistry and function of a putative Pf S33 proline aminopeptidase (PJPAP). Unlike other P. falciparum aminopeptidases, PJPAP contains a predicted protein export element that is non-syntenic with other human infecting Plasmodium species. Characterization of PJPAP demonstrated that it is exported into the host red blood cell and that it is a prolyl aminopeptidase with a preference for N-terminal proline substrates. In addition genetic deletion of this exopeptidase was shown to lead to an increase in the deformability of parasite-infected red cells and in reduced adherence to the endothelial cell receptor CD36 under flow conditions. Our studies suggest that PJPAP plays a role in the rigidification and adhesion of infected red blood cells to endothelial surface receptors, a role that may make this protein a novel target for anti-disease interventions strategies. (C) 2016 Elsevier Inc. All rights reserved

    The aminopeptidase inhibitor CHR-2863 is an orally bioavailable inhibitor of murine malaria

    Get PDF
    Malaria remains a significant risk in many areas of the world, with resistance to the current antimalarial pharmacopeia an everincreasing problem. The M1 alanine aminopeptidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP) are believed to play a role in the terminal stages of digestion of host hemoglobin and thereby generate a pool of free amino acids that are essential for parasite growth and development. Here, we show that an orally bioavailable aminopeptidase inhibitor, CHR-2863, is efficacious against murine malaria

    The Importance of pH in Regulating the Function of the Fasciola hepatica Cathepsin L1 Cysteine Protease

    Get PDF
    The helminth parasite Fasciola hepatica secretes cathepsin L cysteine proteases to invade its host, migrate through tissues and digest haemoglobin, its main source of amino acids. Here we investigated the importance of pH in regulating the activity and functions of the major cathepsin L protease FheCL1. The slightly acidic pH of the parasite gut facilitates the auto-catalytic activation of FheCL1 from its inactive proFheCL1 zymogen; this process was ∌40-fold faster at pH 4.5 than at pH 7.0. Active mature FheCL1 is very stable at acidic and neutral conditions (the enzyme retained ∌45% activity when incubated at 37°C and pH 4.5 for 10 days) and displayed a broad pH range for activity peptide substrates and the protein ovalbumin, peaking between pH 5.5 and pH 7.0. This pH profile likely reflects the need for FheCL1 to function both in the parasite gut and in the host tissues. FheCL1, however, could not cleave its natural substrate Hb in the pH range pH 5.5 and pH 7.0; digestion occurred only at pH≀4.5, which coincided with pH-induced dissociation of the Hb tetramer. Our studies indicate that the acidic pH of the parasite relaxes the Hb structure, making it susceptible to proteolysis by FheCL1. This process is enhanced by glutathione (GSH), the main reducing agent contained in red blood cells. Using mass spectrometry, we show that FheCL1 can degrade Hb to small peptides, predominantly of 4–14 residues, but cannot release free amino acids. Therefore, we suggest that Hb degradation is not completed in the gut lumen but that the resulting peptides are absorbed by the gut epithelial cells for further processing by intracellular di- and amino-peptidases to free amino acids that are distributed through the parasite tissue for protein anabolism

    In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects

    Get PDF
    Huntington's disease (HD) is a neurodegenerative disorder previously thought to be of primary neuronal origin, despite ubiquitous expression of mutant huntingtin (mHtt). We tested the hypothesis that mHtt expressed in astrocytes may contribute to the pathogenesis of HD. To better understand the contribution of astrocytes in HD in vivo, we developed a novel mouse model using lentiviral vectors that results in selective expression of mHtt into striatal astrocytes. Astrocytes expressing mHtt developed a progressive phenotype of reactive astrocytes that was characterized by a marked decreased expression of both glutamate transporters, GLAST and GLT-1, and of glutamate uptake. These effects were associated with neuronal dysfunction, as observed by a reduction in DARPP-32 and NR2B expression. Parallel studies in brain samples from HD subjects revealed early glial fibrillary acidic protein expression in striatal astrocytes from Grade 0 HD cases. Astrogliosis was associated with morphological changes that increased with severity of disease, from Grades 0 through 4 and was more prominent in the putamen. Combined immunofluorescence showed co-localization of mHtt in astrocytes in all striatal HD specimens, inclusive of Grade 0 HD. Consistent with the findings from experimental mice, there was a significant grade-dependent decrease in striatal GLT-1 expression from HD subjects. These findings suggest that the presence of mHtt in astrocytes alters glial glutamate transport capacity early in the disease process and may contribute to HD pathogenesis

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD

    Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development

    Get PDF
    Amino acids generated from the catabolism of hemoglobin by intra-erythrocytic malaria parasites are not only essential for protein synthesis but also function in maintaining an osmotically stable environment, and creating a gradient by which amino acids that are rare or not present in hemoglobin are drawn into the parasite from host serum. We have proposed that a Plasmodium falciparum M17 leucyl aminopeptidase (PfLAP) generates and regulates the internal pool of free amino acids and therefore represents a target for novel antimalarial drugs. This enzyme has been expressed in insect cells as a functional 320-kDa homo-hexamer that is optimally active at neutral or alkaline pH, is dependent on metal ions for activity, and exhibits a substrate preference for N-terminally exposed hydrophobic amino acids, particularly leucine. PfLAP is produced by all stages in the intra-erythrocytic developmental cycle of malaria but was most highly expressed by trophozoites, a stage at which hemoglobin degradation and parasite protein synthesis are elevated. The enzyme was located by immunohistochemical methods and by transfecting malaria cells with a PfLAP-green fluorescent protein construct, to the cytosolic compartment of the cell at all developmental stages, including segregated merozoites. Amino acid dipeptide analogs, such as bestatin and its derivatives, are potent inhibitors of the protease and also block the growth of P. falciparum malaria parasites in culture. This study provides a biochemical basis for the antimalarial activity of aminopeptidase inhibitors. Availability of functionally active recombinant PfLAP, coupled with a simple enzymatic readout, will aid medicinal chemistry and/or high throughput approaches for the future design/discovery of new antimalarial drugs

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    • 

    corecore