1,313 research outputs found

    The Dual Origin Of The Nitrogen Deficiency In Comets: Selective Volatile Trapping In The Nebula And Postaccretion Radiogenic Heating

    Get PDF
    We propose a scenario that explains the apparent nitrogen deficiency in comets in away that is consistent with the fact that the surfaces of Pluto and Triton are dominated by nitrogen-rich ice. We use a statistical thermodynamic model to investigate the composition of the successive multiple guest clathrates that may have formed during the cooling of the primordial nebula from the most abundant volatiles present in the gas phase. These clathrates agglomerated with the other ices (pure condensates or stoichiometric hydrates) and formed the building blocks of comets. We report that molecular nitrogen is a poor clathrate former, when we consider a plausible gas-phase composition of the primordial nebula. This implies that its trapping into cometesimals requires a low disk temperature (similar to 20 K) in order to allow the formation of its pure condensate. We find that it is possible to explain the lack of molecular nitrogen in comets as a consequence of their postformation internal heating engendered by the decay of short-lived radiogenic nuclides. This scenario is found to be consistent with the presence of nitrogen-rich ice covers on Pluto and Triton. Our model predicts that comets should present xenon-to-water and krypton-to-water ratios close to solar xenon-to-oxygen and krypton-to-oxygen ratios, respectively. In contrast, the argon-to-water ratio is predicted to be depleted by a factor of similar to 300 in comets compared to solar argon-to-oxygen, as a consequence of poor trapping efficiency and radiogenic heating.CNESJPLAstronom

    Impact of donor age and relationship on outcomes of peripheral blood haploidentical hematopoietic cell transplantation

    Get PDF
    Here we describe a retrospective analysis of outcomes in 299 patients who underwent peripheral blood haplo-HCT with PTCy from July 2009 through May 2021 and their association with donor characteristics. Patients had mostly acute leukemias and high or very high DRI. Multivariate analyses were conducted examining OS, NRM, relapse, cytokine release syndrome, acute and chronic GVHD. Donor characteristics included age, sex, relationship, ABO status, CMV status, and HLA match grade. Our analysis revealed increasing donor age was associated with higher NRM (compared to age \u3c30; age 30-44 HR, 1.65; P = 0.110, age \u3e44 HR, 1.80; P = 0.056) but lower relapse risk (compared to age \u3c30; age 30-44 HR, 0.61; P = 0.034, age \u3e 44 HR, 0.71; P = 0.132). There were no differences in CRS, aGVHD or cGVHD. We found no difference in outcomes based on the donor-recipient relationship. No differences were found based on HLA match grade or DRB1 match status. Increasing donor age was associated with lower relapse risk but higher NRM, resulting in no difference in OS based on donor age. Other donor factors including relationship (parent/sibling/child/ maternal), CMV status, donor sex, HLA match grade, and DRB1 status were not associated with outcomes

    Self-Similar Polytropic Champagne Flows in H II Regions

    Full text link
    We explore large-scale hydrodynamics of H II regions for various self-similar shock flows of a polytropic gas cloud under self-gravity and with quasi-spherical symmetry. We formulate cloud dynamics by invoking specific entropy conservation along streamlines and obtain global self-similar "champagne flows" for a conventional polytropic gas with shocks as a subclass. Molecular cloud cores are ionized and heated to high temperatures after the onset of nuclear burning of a central protostar. We model subsequent evolutionary processes in several ways and construct possible self-similar shock flow solutions. We may neglect the mass and gravity of the central protostar. The ionization and heating of the surrounding medium drive outflows in the inner cloud core and a shock travels outwards, leading to the so-called "champagne phase" with an expanding outer cloud envelope. Complementarily, we also consider the expansion of a central cavity around the centre. As the inner cloud expands plausibly due to powerful stellar winds, a cavity (i.e., `void' or `bubble') can be created around the centre, and when the cavity becomes sufficiently large, one may neglect the gravity of the central protostar. We thus present self-similar shock solutions for "champagne flows" with an expanding central void. We compare our solutions with isothermal solutions and find that the generalization to the polytropic regime brings about significant differences of the gas dynamics, especially for cases of n<1, where n is a key scaling index in the self-similar transformation. We also compare our global polytropic self-similar solutions with numerical simulations on the expansion of H II regions.Comment: 17 pages, 10 figures, accepted for publication by MNRA

    SOPHIE+: First results of an octagonal-section fiber for high-precision radial velocity measurements

    Full text link
    High-precision spectrographs play a key role in exoplanet searches and Doppler asteroseismology using the radial velocity technique. The 1 m/s level of precision requires very high stability and uniformity of the illumination of the spectrograph. In fiber-fed spectrographs such as SOPHIE, the fiber-link scrambling properties are one of the main conditions for high precision. To significantly improve the radial velocity precision of the SOPHIE spectrograph, which was limited to 5-6 m/s, we implemented a piece of octagonal-section fiber in the fiber link. We present here the scientific validation of the upgrade of this instrument, demonstrating a real improvement. The upgraded instrument, renamed SOPHIE+, reaches radial velocity precision in the range of 1-2 m/s. It is now fully efficient for the detection of low-mass exoplanets down to 5-10 Earth mass and for the identification of acoustic modes down to a few tens of cm/s.Comment: 12 pages, 11 figures, accepted in Astronomy and Astrophysic

    Validation of Kepler's Multiple Planet Candidates. III: Light Curve Analysis & Announcement of Hundreds of New Multi-planet Systems

    Get PDF
    The Kepler mission has discovered over 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of them in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false-positives indicates that the multiplanet systems contain very few false-positive signals due to other systems not gravitationally bound to the target star (Lissauer, J. J., et al., 2012, ApJ 750, 131). False positives in the multi- planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false-positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ~2 unidentified false-positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves and ground-based spectroscopy and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. None the less, our result nearly doubles the number of verified exoplanets.Comment: 138 pages, 8 Figures, 5 Tables. Accepted for publications in the Astrophysical Journa

    Yukawa potentials in systems with partial periodic boundary conditions I : Ewald sums for quasi-two dimensional systems

    Full text link
    Yukawa potentials are often used as effective potentials for systems as colloids, plasmas, etc. When the Debye screening length is large, the Yukawa potential tends to the non-screened Coulomb potential ; in this small screening limit, or Coulomb limit, the potential is long ranged. As it is well known in computer simulation, a simple truncation of the long ranged potential and the minimum image convention are insufficient to obtain accurate numerical data on systems. The Ewald method for bulk systems, i.e. with periodic boundary conditions in all three directions of the space, has already been derived for Yukawa potential [cf. Y., Rosenfeld, {\it Mol. Phys.}, \bm{88}, 1357, (1996) and G., Salin and J.-M., Caillol, {\it J. Chem. Phys.}, \bm{113}, 10459, (2000)], but for systems with partial periodic boundary conditions, the Ewald sums have only recently been obtained [M., Mazars, {\it J. Chem. Phys.}, {\bf 126}, 056101 (2007)]. In this paper, we provide a closed derivation of the Ewald sums for Yukawa potentials in systems with periodic boundary conditions in only two directions and for any value of the Debye length. A special attention is paid to the Coulomb limit and its relation with the electroneutrality of systems.Comment: 40 pages, 5 figures and 4 table

    A Summary Catalogue of Microbial Drinking Water Tests for Low and Medium Resource Settings

    Get PDF
    Microbial drinking-water quality testing plays an essential role in measures to protect public health. However, such testing remains a significant challenge where resources are limited. With a wide variety of tests available, researchers and practitioners have expressed difficulties in selecting the most appropriate test(s) for a particular budget, application and setting. To assist the selection process we identified the characteristics associated with low and medium resource settings and we specified the basic information that is needed for different forms of water quality monitoring. We then searched for available faecal indicator bacteria tests and collated this information. In total 44 tests have been identified, 18 of which yield a presence/absence result and 26 of which provide enumeration of bacterial concentration. The suitability of each test is assessed for use in the three settings. The cost per test was found to vary from 0.60to0.60 to 5.00 for a presence/absence test and from 0.50to0.50 to 7.50 for a quantitative format, though it is likely to be only a small component of the overall costs of testing. This article presents the first comprehensive catalogue of the characteristics of available and emerging low-cost tests for faecal indicator bacteria. It will be of value to organizations responsible for monitoring national water quality, water service providers, researchers and policy makers in selecting water quality tests appropriate for a given setting and application

    Caveats for using statistical significance tests in research assessments

    Full text link
    This paper raises concerns about the advantages of using statistical significance tests in research assessments as has recently been suggested in the debate about proper normalization procedures for citation indicators. Statistical significance tests are highly controversial and numerous criticisms have been leveled against their use. Based on examples from articles by proponents of the use statistical significance tests in research assessments, we address some of the numerous problems with such tests. The issues specifically discussed are the ritual practice of such tests, their dichotomous application in decision making, the difference between statistical and substantive significance, the implausibility of most null hypotheses, the crucial assumption of randomness, as well as the utility of standard errors and confidence intervals for inferential purposes. We argue that applying statistical significance tests and mechanically adhering to their results is highly problematic and detrimental to critical thinking. We claim that the use of such tests do not provide any advantages in relation to citation indicators, interpretations of them, or the decision making processes based upon them. On the contrary their use may be harmful. Like many other critics, we generally believe that statistical significance tests are over- and misused in the social sciences including scientometrics and we encourage a reform on these matters.Comment: Accepted version for Journal of Informetric

    Planetary Candidates Observed by Kepler V: Planet Sample from Q1-Q12 (36 Months)

    Full text link
    The Kepler mission discovered 2842 exoplanet candidates with 2 years of data. We provide updates to the Kepler planet candidate sample based upon 3 years (Q1-Q12) of data. Through a series of tests to exclude false-positives, primarily caused by eclipsing binary stars and instrumental systematics, 855 additional planetary candidates have been discovered, bringing the total number known to 3697. We provide revised transit parameters and accompanying posterior distributions based on a Markov Chain Monte Carlo algorithm for the cumulative catalogue of Kepler Objects of Interest. There are now 130 candidates in the cumulative catalogue that receive less than twice the flux the Earth receives and more than 1100 have a radius less than 1.5 Rearth. There are now a dozen candidates meeting both criteria, roughly doubling the number of candidate Earth analogs. A majority of planetary candidates have a high probability of being bonafide planets, however, there are populations of likely false-positives. We discuss and suggest additional cuts that can be easily applied to the catalogue to produce a set of planetary candidates with good fidelity. The full catalogue is publicly available at the NASA Exoplanet Archive.Comment: Accepted for publication, ApJ

    Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets

    Get PDF
    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio
    • …
    corecore