200 research outputs found

    The multiple mechanisms of spatially discordant alternans in the heart

    Get PDF
    Cardiac alternans, referring to beat-to-beat alternations to the action potential (AP) duration (APD) of cardiomyocytes (Fig. 1), are associated with contractile dysfunction and arrhythmogenesis in multiple disease conditions. In tissue, these cellular phenomena can manifest as spatially concordant alternans (SCA), wherein all regions alternate with the same phase, or spatially discordant alternans (SDA), wherein different regions alternate with opposite (period-2; Fig. 1) or otherwise offset (higher period) phase. Whereas SCA can directly affect cardiac output (mechanical force can alternate strong/weak associated with long/short APD), SDA present also the possibility for transition to potentially fatal arrhythmias (1)

    Causes of Abnormal Ca2+ Transients in Guinea Pig Pathophysiological Ventricular Muscle Revealed by Ca2+ and Action Potential Imaging at Cellular Level

    Get PDF
    BACKGROUND: Abnormal Ca(2+) transients are often observed in heart muscles under a variety of pathophysiological conditions including ventricular tachycardia. To clarify whether these abnormal Ca(2+) transients can be attributed to abnormal action potential generation or abnormal Ca(2+) handling/excitation-contraction (EC) coupling, we developed a procedure to determine Ca(2+) and action potential signals at the cellular level in isolated heart tissues. METHODOLOGY/PRINCIPAL FINDINGS: After loading ventricular papillary muscle with rhod-2 and di-4-ANEPPS, mono-wavelength fluorescence images from rhod-2 and ratiometric images of two wavelengths of emission from di-4-ANEPPS were sequentially obtained. To mimic the ventricular tachycardia, the ventricular muscles were field-stimulated in non-flowing Krebs solution which elicited abnormal Ca(2+) transients. For the failed and alternating Ca(2+) transient generation, there were two types of causes, i.e., failed or abnormal action potential generation and abnormal EC coupling. In cells showing delayed initiation of Ca(2+) transients with field stimulation, action potential onset was delayed and the rate of rise was slower than in healthy cells. Similar delayed onset was also observed in the presence of heptanol, an inhibitor of gap junction channels but having a non-specific channel blocking effect. A Na(+) channel blocker, on the other hand, reduced the rate of rise of the action potentials but did not result in desynchronization of the action potentials. The delayed onset of action potentials can be explained primarily by impaired gap junctions and partly by Na(+) channel inactivation. CONCLUSIONS/SIGNIFICANCE: Our results indicate that there are multiple patterns for the causes of abnormal Ca(2+) signals and that our methods are useful for investigating the physiology and pathophysiology of heart muscle

    Trigger versus Substrate: Multi-Dimensional Modulation of QT-Prolongation Associated Arrhythmic Dynamics by a hERG Channel Activator

    Get PDF
    Background: Prolongation of the QT interval of the electrocardiogram (ECG), underlain by prolongation of the action potential duration (APD) at the cellular level, is linked to increased vulnerability to cardiac arrhythmia. Pharmacological management of arrhythmia associated with QT prolongation is typically achieved through attempting to restore APD to control ranges, reversing the enhanced vulnerability to Ca²⁺-dependent afterdepolarisations (arrhythmia triggers) and increased transmural dispersion of repolarisation (arrhythmia substrate) associated with APD prolongation. However, such pharmacological modulation has been demonstrated to have limited effectiveness. Understanding the integrative functional impact of pharmacological modulation requires simultaneous investigation of both the trigger and substrate. Methods: We implemented a multi-scale (cell and tissue) in silico approach using a model of the human ventricular action potential, integrated with a model of stochastic 3D spatiotemporal Ca²⁺ dynamics, and parameter modification to mimic prolonged QT conditions. We used these models to examine the efficacy of the hERG activator MC-II-157c in restoring APD to control ranges, examined its effects on arrhythmia triggers and substrates, and the interaction of these arrhythmia triggers and substrates. Results: QT prolongation conditions promoted the development of spontaneous release events underlying afterdepolarisations during rapid pacing. MC-II-157c applied to prolonged QT conditions shortened the APD, inhibited the development of afterdepolarisations and reduced the probability of afterdepolarisations manifesting as triggered activity in single cells. In tissue, QT prolongation resulted in an increased transmural dispersion of repolarisation, which manifested as an increased vulnerable window for uni-directional conduction block. In some cases, MC-II-157c further increased the vulnerable window through its effects on INa. The combination of stochastic release event modulation and transmural dispersion of repolarisation modulation by MC-II-157c resulted in an integrative behavior wherein the arrhythmia trigger is reduced but the arrhythmia substrate is increased, leading to variable and non-linear overall vulnerability to arrhythmia. Conclusion: The relative balance of reduced trigger and increased substrate underlies a multi-dimensional role of MC-II-157c in modulation of cardiac arrhythmia vulnerability associated with prolonged QT interval

    Oxidant Sensing by Protein Kinases A and G Enables Integration of Cell Redox State with Phosphoregulation

    Get PDF
    The control of vascular smooth muscle contractility enables regulation of blood pressure, which is paramount in physiological adaptation to environmental challenges. Maintenance of stable blood pressure is crucial for health as deregulation (caused by high or low blood pressure) leads to disease progression. Vasotone is principally controlled by the cyclic nucleotide dependent protein kinases A and G, which regulate intracellular calcium and contractile protein calcium sensitivity. The classical pathways for activation of these two kinases are well established and involve the formation and activation by specific cyclic nucleotide second messengers. Recently we reported that both PKA and PKG can be regulated independently of their respective cyclic nucleotides via a mechanism whereby the kinases sense cellular oxidant production using redox active thiols. This novel redox regulation of these kinases is potentially of physiological importance, and may synergise with the classical regulatory mechanisms

    Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture

    Get PDF
    Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study

    Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart

    Get PDF
    Heart failure (HF) is characterized by molecular and cellular defects which jointly contribute to decreased cardiac pump function. During the development of the initial cardiac damage which leads to HF, adaptive responses activate physiological countermeasures to overcome depressed cardiac function and to maintain blood supply to vital organs in demand of nutrients. However, during the chronic course of most HF syndromes, these compensatory mechanisms are sustained beyond months and contribute to progressive maladaptive remodeling of the heart which is associated with a worse outcome. Of pathophysiological significance are mechanisms which directly control cardiac contractile function including ion- and receptor-mediated intracellular signaling pathways. Importantly, signaling cascades of stress adaptation such as intracellular calcium (Ca2+) and 3′-5′-cyclic adenosine monophosphate (cAMP) become dysregulated in HF directly contributing to adverse cardiac remodeling and depression of systolic and diastolic function. Here, we provide an update about Ca2+ and cAMP dependent signaling changes in HF, how these changes affect cardiac function, and novel therapeutic strategies which directly address the signaling defects

    The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality

    Full text link
    Specializations for electroreception in sense organs and brain centers are found in a wide variety of fishes and amphibians, though probably in a small minority of teleost taxa. No other group of vertebrates or invertebrates is presently suspected to have adaptations for electroreception in the definition given here. The distribution among fishes is unlike any other sense modality in that it has apparently been invented, lost completely and reinvented several times independently, using distinct receptors and central nuclei in the medulla. There are so far no clearly borderline or transitional fishes, either physiologically or anatomically. We rather expect a few new electroreceptive taxa to be found. The evoked potential method and the newly validated central anatomical criteria provide two useful tools for searching.Although Myxiniformes probably lack electroreception, it is well developed in Petromyzoniformes and in all other non-teleost fishes except Holostei. Thus Elasmobranchia, Holocephala, Dipneusti, Crossopterygii, Polypteriformes and Chondrostei have the physiological and anatomical specializations in a common form consistent with a single origin in primitive vertebrates. Amphibian ancestors probably inherited the system from a stem similar to one of these and passed it on at least to the ambystomatoid and salamandroid urodeles, apparently after losing the kinocilium of the sense cell. The suggestion of electroreception in ichthyophid apodans from skin histology has not been confirmed physiologically, behaviorally or by brain anatomy. With respect to more advanced fishes the most parsimonious interpretation is that the entire system, peripheral and central was lost in ancestors of holostean and teleostean fishes and new systems reinvented in Siluriformes, in Gymnotiformes, in Xenomystinae and in Mormyriformes. These 4 taxa must represent at least two, and probably 3 or 4 independent inventions, presumably from mechanoreceptive lateral line organs and brain centers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25137/1/0000573.pd
    corecore