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The multiple mechanisms of spatially discordant alternans in the heart 

Michael A. Colman, University of Leeds, UK 

Cardiac alternans, referring to beat-to-beat alternations to the action potential (AP) duration 

(APD) of cardiomyocytes (Fig. 1), are associated with contractile dysfunction and 

arrhythmogenesis in multiple disease conditions. In tissue, these cellular phenomena can 

manifest as spatially concordant alternans (SCA), wherein all regions alternate with the same 

phase, or spatially discordant alternans (SDA), wherein different regions alternate with 

opposite (period-2; Fig. 1) or otherwise offset (higher period) phase. Whereas SCA can directly 

affect cardiac output (mechanical force can alternate strong/weak associated with long/short 

APD), SDA present also the possibility for transition to potentially fatal arrhythmias (1).  

Previous theoretical studies (1,2) have demonstrated the critical role of conduction velocity 

restitution (CVR) in the development of SDA (Fig. 1), mechanisms which are supported by 

experimental studies (3); this paradigm, which requires rapid pacing and/or slow recovery of 

the fast Na+ current (INa), is now well established and has received detailed non-linear analysis 

(2,4). However, other experimental studies, such as those associated with heart failure, 

Brugada syndrome, and long QT syndromes, observe SDA emerging at normal or slow pacing 

rates and/or in the absence of slow INa recovery (5–7); these observations cannot be explained 

by mechanisms dependent on CVR. This is far from a trivial discrepancy: the efficacy of 

pharmacological treatment strategies is strongly linked to the governing arrhythmia 

mechanisms and it is therefore vital to establish if the dynamics of SDA in the absence of CVR 

are similar to or distinct from those in its presence. 

To explore these pertinent gaps in the understanding of SDA mechanisms, Huang et al. in this 

issue (8) build on two decades’ work from Zhilin Qu and colleagues to theoretically study the 

occurrence and dynamics of SDA emerging at slow pacing rates, or otherwise in the absence 

of CVR. These investigations reveal distinct dynamics compared to CVR-dependent SDA, 

highlighting the clinical importance of developing a greater understanding of SDA under all 

conditions. 

In single cells, rapid pacing in combination with certain conditions (such as slow recovery of 

the calcium current or INa) can induce bifurcations of the APD restitution curve dependent on 

refractory properties – alternans. Incomplete recovery leads to a smaller current amplitude 

on the subsequent beat which, for depolarising currents, results in a reduced AP upstroke 

velocity and/or plateau phase, and ultimately shorter APD; this incomplete current activation 

permits full recovery for the next beat, and the cycle repeats. These refractory properties are 

also present in the intracellular calcium handling system: rapid pacing can induce beat-to-

beat alternations to the magnitude of intracellular calcium release and consequently the 

whole-cell calcium transient, which may induce APD alternans through interactions with 

calcium-sensitive currents such as that carried by the sodium-calcium exchanger (9,10).  

At slow pacing rates and in the absence of slow ion current recovery, however, other 

mechanisms are necessary to induce alternans, such as abnormal dynamics of the transient 

outward current (6) or alternating emergence of early-after-depolarisations (EADs; Fig. 1). 

These mechanisms may be the most relevant for clinically observed alternans in the absence 

of rapid pacing, yet it is unclear how the manifestation in tissue may differ for alternans 

resulting from these disparate single-cell mechanisms. 

The dynamics of alternans in tissue can be sensitive to heterogeneous initial conditions, which 

alone can be sufficient to initially induce transient SDA. Heterogeneous initial conditions can 



be imposed directly in simulation studies, but it is less clear how these conditions translate to 

the clinic. In this context, heterogeneous initial conditions may refer to repolarisation 

heterogeneity, either caused by underlying AP heterogeneity or spatially complex previous 

excitations in electrically homogeneous tissue, or the presence of abnormal focal excitations 

responsible for premature ventricular complexes (PVCs). Thus, AP heterogeneity, prior 

patterns of excitation, and prior PVCs all present the possibility to induce perturbations which 

can impact the long-term dynamics of SDA. Huang et al. in this issue study the impact of all of 

these factors in combination with multiple conditions of CVR disengagement on the long-term 

dynamics and stability of nodal points (in 1D) or lines (in 2D) which form at the boundary 

between different tissue regions in SDA (Fig. 1).  

When CVR was engaged, multiple conditions (simple rapid pacing in fully homogeneous 

tissue; directly imposed heterogeneous initial conditions; PVCs; AP heterogeneity) all led to 

stable SDA (Fig. 1). Moreover, the final state, referring to the number and location of nodal 

points or lines, was independent of the specific initial condition heterogeneity and largely 

independent of AP heterogeneity; nodal lines form perpendicular to AP propagation for 

multiple underlying heterogeneity structures. Thus, initial and underlying heterogeneities 

failed to influence the long-term dynamics emerging from rapid-pacing induced alternans; 

CVR-induced SDA is the only stable solution.  

The outcome is more variable in the absence of CVR, with long-term dynamics dependent on 

the method by which CVR was disengaged and the specific conditions of the simulation. In all 

cases without CVR, rapid pacing in isolation was insufficient for SDA; perturbations due to 

heterogeneous initial conditions or PVCs were necessary to induce a transient or sustained 

period of SDA. In conditions where CVR was disengaged during rapid pacing by increasing the 

INa recovery rate, heterogeneous initial conditions- or PVC-induced SDA was unstable, with 

nodes disappearing to form SCA; in the presence of AP propagation, CVR is necessary for 

rapid-pacing induced alternans to maintain stable SDA. 

A second method to disengage CVR which the authors implemented was to apply rapid-pacing 

stimuli to the whole-tissue simultaneously, i.e. global pacing; no conduction throughout the 

tissue occurs and CVR cannot be engaged. Under these non-conduction conditions, weakly 

heterogeneous initial conditions behaved similarly to the rapid INa recovery condition, with 

SDA nodes disappearing and SCA forming (Fig. 1). However, in the presence of strongly 

heterogeneous initial conditions and/or underlying electrical heterogeneity, stable SDA could 

be obtained. The emergent SDA pattern was dependent on the specific initial condition 

heterogeneity and/or underlying tissue heterogeneity; SCA and heterogeneity-induced SDA 

are both stable solutions.  

Finally, CVR was disengaged by slow pacing, with alternans induced via Ito or EAD-dependent 

mechanisms (Fig. 1). In combination with global pacing, similar features emerged to rapid 

global pacing, with both SCA and SDA being stable solutions in homogeneous and 

heterogeneous tissue. However, in the presence of conduction and at slow pacing rates, SDA 

induced in homogeneous tissue was not stable and always resulted in SCA; underlying 

electrical heterogeneity was necessary to induce stable SDA. This final condition may be the 

most relevant for the clinical presentation of SDA observed at normal or slow pacing rates.  

In summary, the stability of SDA and dependence on prior tissue state and perturbations are 

all affected by underlying CVR conditions and cellular alternan mechanism. These 

observations may be critical for successful management of clinical conditions associated with 



T-wave alternans, and mechanistic analysis such as presented here is essential to direct future 

research into novel treatment strategies.  

 

 

 

Fig. 1. Different mechanisms of SCA and SDA. The upper panel illustrates single-cell alternans 

emerging during rapid pacing or alternating EADs. The middle panel summarises the different 

condition-dependent pathways to the final state of SCA or SDA. Het. IC refers to conditions 

with heterogeneous initial conditions; PVC refers to conditions which included an initial 

applied focal excitation; Het. AP refers to conditions with underlying electrophysiological 

heterogeneity; Unstable SDA refers to a transient period of SDA which eventually forms SCA. 

The lower panel, taken from Huang et al. in this issue, illustrates SCA and SDA in a 1D strand 

of tissue.   
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