20 research outputs found

    D-region ion–neutral coupled chemistry (SodankylĂ€ Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4) – WACCM-SIC and WACCM-rSIC

    Get PDF
    This study presents a new ion–neutral chemical model coupled into the Whole Atmosphere Community Climate Model (WACCM). The ionospheric D-region (altitudes âˆŒâ€‰â€Ż50–90 km) chemistry is based on the SodankylĂ€ Ion Chemistry (SIC) model, a one-dimensional model containing 307 ion–neutral and ion recombination, 16 photodissociation and 7 photoionization reactions of neutral species, positive and negative ions, and electrons. The SIC mechanism was reduced using the simulation error minimization connectivity method (SEM-CM) to produce a reaction scheme of 181 ion–molecule reactions of 181 ion–molecule reactions of 27 positive and 18 negative ions. This scheme describes the concentration profiles at altitudes between 20 km and 120 km of a set of major neutral species (HNO3, O3, H2O2, NO, NO2, HO2, OH, N2O5) and ions (O2+, O4+, NO+, NO+(H2O), O2+(H2O), H+(H2O), H+(H2O)2, H+(H2O)3, H+(H2O)4, O3−, NO2−, O−, O2, OH−, O2−(H2O), O2−(H2O)2, O4−, CO3−, CO3−(H2O), CO4−, HCO3−, NO2−, NO3−, NO3−(H2O), NO3−(H2O)2, NO3−(HNO3), NO3−(HNO3)2, Cl−, ClO−), which agree with the full SIC mechanism within a 5 % tolerance. Four 3-D model simulations were then performed, using the impact of the January 2005 solar proton event (SPE) on D-region HOx and NOx chemistry as a test case of four different model versions: the standard WACCM (no negative ions and a very limited set of positive ions); WACCM-SIC (standard WACCM with the full SIC chemistry of positive and negative ions); WACCM-D (standard WACCM with a heuristic reduction of the SIC chemistry, recently used to examine HNO3 formation following an SPE); and WACCM-rSIC (standard WACCM with a reduction of SIC chemistry using the SEM-CM method). The standard WACCM misses the HNO3 enhancement during the SPE, while the full and reduced model versions predict significant NOx, HOx and HNO3 enhancements in the mesosphere during solar proton events. The SEM-CM reduction also identifies the important ion–molecule reactions that affect the partitioning of odd nitrogen (NOx), odd hydrogen (HOx) and O3 in the stratosphere and mesosphere

    Observed propagation route of VLF transmitter signals in the magnetosphere

    Get PDF
    Signals of powerful ground transmitters at various places have been detected by satellites in near‐Earth space. The study on propagation mode, ducted or nonducted, has attracted much attentions for several decades. Based on the statistical results from Van Allen Probes (data from October 2012 to March 2017) and DEMETER satellite (from January 2006 to December 2007), we present the ground transmitter signals distributed clearly in ionosphere and magnetosphere. The observed propagation route in the meridian plane in the magnetosphere for each of various transmitters from the combination of DEMETER and Van Allen Probes data in nighttime is revealed for the first time. We use realistic ray tracing simulation and compare simulation results against Van Allen Probes and DEMETER observation. By comparison we demonstrate that the observed propagation route, with partial deviation from the field lines corresponding to ground stations, provides direct and clear statistical evidence that the nonducted propagation mode plays a main role, although with partial contribution from ducted propagation. The propagation characteristics of VLF transmitter signals in the magnetosphere are critical for quantitatively assessing their contribution to energetic electron loss in radiation belts

    Observations of Radiation Belt Losses Due to Cyclotron Wave-Particle Interactions

    Get PDF
    Electron loss to the atmosphere plays a critical role in driving dynamics of the Earths Van Allen radiation belts and slot region. This is a review of atmospheric loss of radiation belt electrons caused by plasma wave scattering via Doppler-shifted cyclotron resonance. In particular, the focus is on observational signatures of electron loss, which include direct measurements of precipitating electrons, measured properties of waves that drive precipitation, and variations in the trapped population resulting from loss. We discuss wave and precipitation measurements from recent missions, including simultaneous multi-payload observations, which have provided new insight into the dynamic nature of the radiation belts

    Examination of Radiation Belt Dynamics during Substorm Clusters: Activity Drivers and Dependencies of Trapped Flux Enhancements

    No full text
    Dynamical variations of radiation belt trapped electron fluxes are examined to better understand the variability of enhancements linked to substorm clusters. Analysis is undertaken using the Substorm Onsets and Phases from Indices of the Electrojet substorm cluster algorithm for event detection. Observations from low earth orbit are complemented by additional measurements from medium earth orbit to allow a major expansion in the energy range considered, from medium energy energetic electrons up to ultra-relativistic electrons. The number of substorms identified inside a cluster does not depend strongly on solar wind drivers or geomagnetic indices either before, during, or after the cluster start time. Clusters of substorms linked to moderate (100 nT < AE ≀ 300 nT) or strong AE (AE ≄ 300 nT) disturbances are associated with radiation belt flux enhancements, including up to ultra-relativistic energies by the strongest substorms (as measured by strong southward Bz and high AE). These clusters reliably occur during times of high speed solar winds streams with associated increased magnetospheric convection. However, substorm clusters associated with quiet AE disturbances (AE ≀ 100 nT) lead to no significant chorus whistler mode intensity enhancements, or increases in energetic, relativistic, or ultra-relativistic electron flux in the outer radiation belts. In these cases the solar wind speed is low, and the geomagnetic Kp index indicates a lack of magnetospheric convection. Our study clearly indicates that clusters of substorms occurring outside of high speed wind streams are not by themselves sufficient to drive acceleration, which may be due to the lack of pre-cluster convection

    On the Use of VLF Narrowband Measurements to Study the Lower Ionosphere and the Mesosphere–Lower Thermosphere

    No full text

    Very-Low-Frequency transmitters bifurcate energetic electron belt in near-earth space.

    No full text
    Very-Low-Frequency (VLF) transmitters operate worldwide mostly at frequencies of 10-30 kilohertz for submarine communications. While it has been of intense scientific interest and practical importance to understand whether VLF transmitters can affect the natural environment of charged energetic particles, for decades there remained little direct observational evidence that revealed the effects of these VLF transmitters in geospace. Here we report a radially bifurcated electron belt formation at energies of tens of kiloelectron volts (keV) at altitudes of ~0.8-1.5 Earth radii on timescales over 10 days. Using Fokker-Planck diffusion simulations, we provide quantitative evidence that VLF transmitter emissions that leak from the Earth-ionosphere waveguide are primarily responsible for bifurcating the energetic electron belt, which typically exhibits a single-peak radial structure in near-Earth space. Since energetic electrons pose a potential danger to satellite operations, our findings demonstrate the feasibility of mitigation of natural particle radiation environment
    corecore