1,527 research outputs found

    Introduction

    Get PDF

    Scaling Laws for Impact Craters in Water

    Get PDF
    Tsunami waves from asteroid impacts into water are of concern from asteroids in the 200 m to 1 km diameter range because this spans the range from asteroids that will likely hit the surface and not airburst, but also be small enough that global climate effects will hopefully be minimal. Current estimates of impact tsunamis depend on either hydrocode simulations or on semi-analytical models. Unfortunately there is significant disagreement between these methods. One of the main reasons for the disparity is that the semi-analytical models such as Holsapple (1993) rely on experimental impacts into deep water. However for asteroids in the 200 - 1000 m range even the deep ocean basins can appear as shallow water impacts where the crater formed in the water reaches all the way to the sea floor. Another reason for the disparity arises from the linear interpolation of data across many orders of magnitude difference between Froude number (ratio of kinetic to gravitational energy) used in the laboratory experiments and what would be seen in an asteroid impact. The Gault & Sonett (1982) experiment shot millimeter sized glass spheres into water at 1 to 6 km/s and the Olevson (1969) experiment dropped millimeter sized water drops at a few meters per second. The goal of this work was to fill in the gaps and conduct experiments and simulations at the correct Froude numbers of interest, and in both deep and shallow water, to help resolve the disparity and extend the semi-analytical models

    Nitride tuning of lanthanide chromites

    Get PDF
    LnCrO3−xNx compounds with Ln = La, Pr and Nd represent one of the few examples of chromium oxynitrides and the first chromium oxynitride perovskites. Hole-doping of LnCrO3 through O2−/N3− anion substitution suppresses the antiferromagnetic transition far less drastically than cation substitutions.</p

    Engineering, expression in transgenic plants and characterisation of e559, a rabies virus-neutralising monoclonal antibody.

    Get PDF
    Rabies post-exposure prophylaxis (PEP) currently comprises administration of rabies vaccine together with rabies immunoglobulin (RIG) of either equine or human origin. In the developing world, RIG preparations are expensive, often in short supply, and of variable efficacy. Therefore, we are seeking to develop a monoclonal antibody cocktail to replace RIG. Here, we describe the cloning, engineering and production in plants of a candidate monoclonal antibody (E559) for inclusion in such a cocktail. The murine constant domains of E559 were replaced with human IgG1κ constant domains and the resulting chimeric mouse-human genes were cloned into plant expression vectors for stable nuclear transformation of Nicotiana tabacum. The plant-expressed, chimeric antibody was purified and biochemically characterized, was demonstrated to neutralize rabies virus in a fluorescent antibody virus neutralization assay, and conferred protection in a hamster challenge model

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been
    corecore