
M A J O R A R T I C L E

Engineering, Expression in Transgenic Plants and
Characterisation of E559, a Rabies Virus-
Neutralising Monoclonal Antibody

Craig J. van Dolleweerd,1 Audrey Y-H. Teh,1 Ashley C. Banyard,4 Leonard Both,1 Hester C. T. Lotter-Stark,2 Tsepo Tsekoa,2

Baby Phahladira,3 Wonderful Shumba,3 Ereck Chakauya,2 Claude T. Sabeta,3 Clemens Gruber,5 Anthony R. Fooks,4

Rachel K. Chikwamba,2 and Julian K-C. Ma1

1Research Centre for Infection and Immunity, Division of Clinical Sciences, St George’s University of London, United Kingdom; 2Council for Scientific and
Industrial Research (CSIR), Biosciences, Pretoria, South Africa; 3Agricultural Research Council-Onderstepoort Veterinary Institute (ARC-OVI), OIE Rabies
Reference Laboratory, Onderstepoort, Pretoria, South Africa; 4Wildlife Zoonoses and Vector Borne Disease Research Group, Animal Health and Veterinary
Laboratories Agency (AHVLA), Surrey, United Kingdom; and 5Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria

Rabies post-exposure prophylaxis (PEP) currently comprises administration of rabies vaccine together with ra-
bies immunoglobulin (RIG) of either equine or human origin. In the developing world, RIG preparations are
expensive, often in short supply, and of variable efficacy. Therefore, we are seeking to develop a monoclonal
antibody cocktail to replace RIG. Here, we describe the cloning, engineering and production in plants of a can-
didate monoclonal antibody (E559) for inclusion in such a cocktail. The murine constant domains of E559 were
replaced with human IgG1κ constant domains and the resulting chimeric mouse-human genes were cloned into
plant expression vectors for stable nuclear transformation of Nicotiana tabacum. The plant-expressed, chimeric
antibody was purified and biochemically characterized, was demonstrated to neutralize rabies virus in a fluo-
rescent antibody virus neutralization assay, and conferred protection in a hamster challenge model.
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Rabies is a zoonotic disease caused by rabies virus
(RABV), the type member of the Lyssavirus genus,
and is responsible for >55 000 deaths per annum [1]
largely in the developing world [2–4], where transmis-
sion usually occurs following the bite of an infected dog.
If left untreated, the virus progressively infects sur-
rounding neurons and propagates in the central
nervous system leading, almost invariably, to death.
The disease can be prevented by post-exposure pro-
phylaxis (PEP), which consists of administration of

inactivated RABV vaccine together with passive anti-
body therapy [5–7]. In passive antibody therapy, rabies
immunoglobulin (RIG), derived either from immu-
nized human (HRIG) or equine (ERIG) sources [8–11],
is infiltrated into the wound site.

However, in the developing world, these serum-
derived antibodies often suffer from drawbacks includ-
ing limited availability, batch-to-batch variation, high
cost, contamination with blood-borne adventitious
agents, and/or risk of adverse reactions [12]; for these
reasons, the World Health Organization (WHO) en-
courages the development and evaluation of alternative
biologics for RIG replacement [13]. One such alterna-
tive is offered by monoclonal antibodies (mAbs) that
are capable of neutralizing a wide range of RABV iso-
lates [12, 14–18]. Rabies neutralizing antibodies are di-
rected against the viral glycoprotein, and several studies
have demonstrated that rabies-specific mAbs can pro-
tect rodents after RABV challenge [18–23].

However, given the unique epitope specificity of indi-
vidual mAbs compared to polyclonal antiserum, any
mAb-based product designed to replace RIG would
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ideally comprise a defined cocktail of RABV-neutralizing mAbs
that would provide coverage against a broad range of RABV iso-
lates, minimize the potential for viral escape and have a potency
comparable to that of RIG. The low production costs, ability of
plants to assemble and modify multimeric proteins such as
mAbs, and ease of scalability make plants a viable platform
for production of mAbs to replace RIG [24, 25].

Several groups have characterized RABV-neutralizing mAbs
[14, 17, 25–30], and the World Health Organization Rabies Col-
laborating Centers (WHO RCCs) identified 5 murine mAbs
[15], with 4 (E559.9.14, M727-5-1, M777-16-3 and 1112-1) rec-
ognizing antigenic site II of the glycoprotein and 1 (62-71-3)
recognizing antigenic site I [31].

Amongst the mAbs identified by the WHO RCCs that recog-
nize antigenic site II, E559 exhibited the broadest virus neutral-
ization spectrum and greatest potency [15, 32] and therefore
represents an important candidate mAb for inclusion in a
RIG-replacement cocktail. In this study, we describe the cloning
and sequences of the murine E559 antibody heavy and light
chains, engineering of a chimeric mouse-human version of
E559, expression in tobacco, and characterization of the puri-
fied, tobacco-derived, chimeric mAb in terms of in vitro virus
neutralization and in vivo protection.

MATERIALS AND METHODS

Cell Lines, Viruses and Plasmids
Hybridoma cell line E559.9.14 [15, 32], expressing murine
IgG1κ mAb E559, was kindly provided by Dr Thomas Müller
(WHO Collaborating Centre for Rabies Surveillance and Re-
search, Friedrich-Loeffler-Institute, Germany). Cells were cul-
tured at 37°C, under a 5% CO2 atmosphere in CD hybridoma
medium (Life Technologies) supplemented with 10% (v/v)
heat-inactivated, fetal bovine serum (Life Technologies) and
2 mM L-glutamine (Sigma, UK). For mAb production, the
cells were adapted to serum-free conditions.

Lyssavirus strains used included challenge virus standard
(CVS) [ATCC VR-959], derived from the original Pasteur
virus [33] and animal-derived isolates, as well as RV61, isolated
from a person bitten by a dog.

The pL32 and pTRAk.2 plasmids used for plant transformation
are described in detail in the online Supplementary Materials.

Agrobacterium tumefaciens strain LBA4404 was purchased
from Invitrogen UK. A. tumefaciens strain GV3101::pMP90RK
was obtained from the Deutsche Sammlung von Mikroorganis-
men und Zellkulturen GmbH (Leibniz Institute, Germany).

Cloning of Full-length Murine E559 IgG
Total RNA from hybridoma cell line E559.9.14 was isolated
from 1 × 106 cells using the RNeasy Mini kit (Qiagen). First
strand complementary DNA (cDNA) was prepared using the
Omniscript RT kit (Qiagen) with oligo-(dT)15 as the primer.

Using the first strand cDNA as template, the murine γ1 heavy
chain gene was amplified using primers FR1γ and 932 (see on-
line Supplementary Table 1 for a description of oligonucleotide
primers). The murine κ light chain gene was amplified using
primers FR1κ and 933. The murine γ1 heavy chain and κ

light chain amplicons were digested with XhoI and EcoRI and
ligated into binary vector pL32 restricted with the same
enzymes.

Cloning of Chimeric Mouse-human E559 IgG
The cloning of the chimeric (mouse-human) heavy (χE559H)
and light (χE559L) chain genes, and the codon-optimised ver-
sions of these genes, is described in detail in the online Supple-
mentary Materials.

Generation and Screening of Transgenic Nicotiana tabacum
Plants
The generation of transgenic plants is described in the online
Supplementary Materials. For screening of plants by Western
blotting and enzyme-linked immunosorbent assay (ELISA),
leaf discs were excised from leaves using the lid of a 1.5 mL Ep-
pendorf tube as a punch. Leaf discs were homogenized using a
plastic pestle in 300 µL of PBS, centrifuged at 20 000 × g for 3
minutes, and the supernatant collected for analysis. Total solu-
ble protein content of the supernatant was measured using the
bicinchoninic acid (BCA) protein assay kit (Pierce, UK).

Purification of mAbs
For purification of the hybridoma-derived mAb (E559Hyb), hy-
bridoma E559.9.14 cells were grown for 7 days in serum-free
conditions, centrifuged (1000 × g, 10 minutes, 4°C) to pellet
the cells, and the supernatant filtered (0.2 µm) and applied to
an anti-mouse IgG1 (heavy chain specific)-agarose (Sigma,
UK) affinity column.

The plant-expressed chimeric antibody (χE559P) was puri-
fied using Protein A/G agarose as described elsewhere [34]. In
the case of the plant-expressed murine E559 (muE559P), an
anti-mouse IgG1 (heavy chain specific)-agarose (Sigma, UK)
affinity column was used instead.

Column fractions were analyzed on Coomassie stained SDS-
PAGE gels. Fractions containing the antibody were pooled, di-
alyzed against phosphate-buffered saline (PBS), and stored in
aliquots at −20°C. Dialyzed material was analyzed by ELISA
and SDS-PAGE to determine the concentration, purity, and in-
tegrity of the mAb.

Samples destined for animal challenge studies were purified
using MabSelect SuRe protein A chromatography on a 5 mL Hi-
Trap column (GE Healthcare). In addition to affinity purifica-
tion, samples were further purified using Capto Q (GE
Healthcare) in flow through mode and polished using ceramic
hydroxyapatite (CHT; BioRad Laboratories). All chromatogra-
phy steps were conducted on an Akta Avant 150 operated via
Unicorn 6.0 software.
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Antibody concentrations were determined using a sandwich
ELISA, by capturing samples with a heavy-chain specific re-
agent and detection with a light chain specific reagent. Com-
mercially available human IgG1κ (The Binding Site, UK) and
mouse IgG1κ (Sigma, UK) were used as concentration
standards.

Deglycosylation Using PNGaseF
The deglycosylation protocol using PNGaseF is described in de-
tail in the online Supplementary Materials.

Glycan Analysis of the Plant-derived mAb E559
A glycoproteomic analysis was undertaken by in-gel digestion of
S-carbamidomethylated sample and analysis by reverse-phase
electrospray ionization mass spectrometry (RP-ESI-MS), as
described elsewhere [35]. TandemMS results were also subjected
to Mascot MS/MS ion search (Matrix Science Ltd, London, UK;
available at: http://www.matrixscience.com).

Enzyme-Linked Immunosorbent Assay
ELISA for detection of antibody heavy or light chains is de-
scribed in detail in the online Supplementary Materials.

SDS-PAGE and Western Blotting
Polyacrylamide gel electrophoresis (PAGE) and Western blot-
ting protocols are described in detail in the online Supplemen-
tary Materials.

Modified Fluorescent Antibody Virus Neutralization (mFAVN)
Assay
Live virus experiments were performed using a modified form
of the fluorescent antibody virus neutralization (FAVN) assay
described for CVS-11 [36, 37] and described in more detail in
the online Supplementary Materials. OIE positive (OIE+) and
OIE negative (OIE−) reference sera were included as controls.
Virus was considered neutralized if the neutralization titer
was >0.5 IU/mL [36].

Hamster Challenge Studies
Four groups of Syrian hamsters were included in the experi-
ment. The challenge and treatment schedule was as follows:
Group 1 (uninfected control) comprised 4 hamsters that did
not receive any viral inoculum or biologics treatment. Group
2 (4 animals) and groups 3 and 4 (each comprising 9 animals)
were all inoculated with 50 µL of 1 × 106 TCID50/mL of a
RABV laboratory strain, Challenge Virus Standard CVS (at
day 0) intramuscularly and treated subsequently (at day 1)
with either PBS (group 2), or with 22.5 IU/kg of either undilut-
ed commercial HRIG (Rabigam [150 IU/mL], National Bio-
products Institute, Pinetown, South Africa) (group 3) or
χE559P mAb (group 4). Biologics (groups 3 and 4) and PBS
(group 2) were administered in the gastrocnemius muscle in
50 µL volumes to simulate passive immunization in PEP

treatment. No rabies vaccine was administered. The hamsters
were observed twice daily over 28 days for any symptoms asso-
ciated with RABV infection. Brain tissues were collected from
animals to confirm rabies virus infection for all those hamsters
that succumbed during the observation period and assessed for
the presence of lyssavirus antigen using the fluorescent antibody
test (FAT) [38]. All hamsters surviving for up to 28 days post-
infection were killed with isoflurane and tested for rabies as
described above. The animal experimental protocols, animal
caging and care, as well as end point for the experiments were
approved by the Animal Ethics Committee for the use of living
vertebrates for research, diagnostic procedures, and product
development (Agricultural Research Council-Onderstepoort
Veterinary Institute, South Africa).

RESULTS

Cloning of Antibody Heavy and Light Chain Genes From
Hybridoma E559.9.14
The murine immunoglobulin γ1 heavy and κ light chain genes
expressed by the E559.9.14 hybridoma were amplified by poly-
merase chain reaction, using first strand cDNA as template. The
deduced amino acid sequences of the E559 heavy and light
chain genes are presented in Figure 1. Highlighted are impor-
tant features, such as the complementarity determining regions
[39] and the presence of potential N-linked glycosylation sites
within the CH2 domain and the light chain VL domain.

Analysis of Hybridoma-derived E559
Analysis of the purified murine hybridoma-derived E559
(E559Hyb) by SDS-PAGE under reducing conditions, followed
by Coomassie staining, showed the presence of 3 bands with
molecular weights of 50 kDa, 27 kDa and 25 kDa (Figure 2A).
Western blotting confirmed previous findings [15] that the 50
kDa band corresponded to the heavy chain (Figure 2B), and
that the 2 lower molecular weight bands were murine light
chains (Figure 2C). The 2 lower molecular weight bands were
excised from the gel, treated with trypsin, and analyzed by
LC-MS. The panel of peptides generated from each band were
nearly identical and in accord with the sequence deduced from
the cloned light chain gene (see Figure 1), indicating that these 2
bands are murine κ light chain isoforms. Minor differences in
the identified peptides are likely due to differences in the extent
of trypsin digestion between the 2 samples. The identification of
a potential N-glycosylation site within the VL domain of the
light chain (Figure 1) suggested that the difference between
the light chain isoforms might be due to the presence of N-
linked glycans. E559Hyb was deglycosylated by treatment with
PNGaseF. Blotting under reducing conditions shows that after
treatment with PNGaseF, the 27 kDa band is lost, leaving only a
single band at 25 kDa (Figure 2D), providing evidence that the
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27 kDa species is a glycosylated form of the light chain and the
25 kDa band is the aglycosylated species.

Characterization of Plant-derived E559
Murine and chimeric (mouse-human) heavy and light chain
genes were cloned into the binary vector pL32 and transformed
into Agrobacterium tumefaciens. Co-cultivation of Nicotiana
tabacum leaf discs with A. tumefaciens strains harboring
the recombinant pL32 binary vectors was used to generate
transgenic tobacco lines expressing murine heavy (pL32-
muE559H), chimeric heavy (pL32-χE559H), murine light
(pL32-muE559L), or chimeric light (pL32-χE559L) chains.
Several independent plants lines derived from each transforma-
tion were screened by ELISA to identify transgenic plants ex-
pressing each antibody chain.

Sexual crossing was used to produce plants lines expressing
the fully assembled chimeric E559 (pL32-χE559) or fully as-
sembled murine E559 (pL32-muE559). Plants were analyzed
by ELISA for antibody assembly and expression levels. The
results from a selected set of plants provide evidence that
both the chimeric (Figure 3A) and murine (Figure 3B) antibod-
ies are assembled. Control plants expressing only the heavy

Figure 1. Sequences and mass spectrometry analysis of E559. Deduced amino acid sequences of the heavy chain variable domain (VH), the heavy chain
constant region domains (CH1, Hinge, CH2, and CH3), the light chain variable domain (VL), and the light chain constant domain (CL) of E559. Complementarity
determining regions (CDRs), as defined by Kabat et al [39], are highlighted in bold and underlined. Amino acids encoded by the primers used for ampli-
fication are shown in bold italics. Potential N-linked glycosylation sites are double-underlined. Peptides identified by mass spectrometry analysis of the 25
kDa and 27 kDa isoforms of the E559Hyb light chain are shown aligned below the corresponding VL and CL sequences (see text).

Figure 2. Analysis of hybridoma-derived E559. Hybridoma-derived E559
(E559Hyb) was purified by affinity chromatography and analyzed by SDS-
PAGE under reducing conditions, followed by staining with Coomassie
Brilliant Blue (A) or blotted to nitrocellulose and probed with HRP-labeled
antisera specific for murine γ1 heavy chains (B) or murine κ light chains
(C). Purified E559Hyb was also treated with PNGaseF, and proteins were
separated by SDS-PAGE under reducing conditions, blotted to nitrocellu-
lose and probed with HRP-labeled light chain-specific antiserum (D).
Lane M: molecular weight standards; (−): untreated E559Hyb; (+): PNGa-
seF-treated E559Hyb. Abbreviation: HRP, horseradish peroxidase.
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chain (pL32-χE559H or pL32-muE559H) or the light chain
(pL32-χE559L or pL32-muE559L) did not produce any signal
above that of the nonrecombinant pL32 control. In sum, 5 of the
6 plants shown in Figure 3A expressed the chimeric antibody,
whereas 3 of the 5 plants shown in Figure 3B expressed the mu-
rine antibody.

Using a commercially available human IgG1κ as an ELISA
standard, the best expression level of the chimeric E559
(χE559P) was calculated as 1.8 mg/kg of fresh leaf weight
(0.04% of total soluble protein), whereas the best yield achieved
from the plant-derived, murine E559 (muE559P) was 1.2 mg/kg
of fresh leaf weight (0.03% of total soluble protein).

As an alternative expression strategy, codon-optimised ver-
sions of the chimeric E559 heavy and light chain genes were
cloned into expression cassettes arranged in tandem (head-
to-tail orientation) in plant transformation vector pTRAk.2.
Co-cultivation of N. tabacum leaf discs with an A. tumefaciens
strain harboring the recombinant pTRAk.2 was used to gener-
ate transgenic tobacco lines, pTRAk-χE559, which were ana-
lyzed by ELISA for antibody assembly and yield (Figure 3C).

The best yield of plant-derived chimeric E559 (χE559P) was de-
termined to be 280 mg/kg of fresh leaf weight, approximately
150-fold greater than the nonoptimized, chimeric antibody ex-
pressed using the pL32 vector.

The purified χE559P was analyzed by Coomassie staining
under nonreducing and reducing conditions. A nonreducing gel
(Figure 4A) showed a predominant high molecular weight band
(indicated by the asterisk) at the expected size for the fully assem-
bled antibody and, despite the presence of some minor low mo-
lecular weight bands, indicates a high degree of purity was
achieved using the single-step (protein A/G) purification. The
reducing gel (Figure 4B) shows the heavy chain (indicated by
H) migrating at the expected position. As previously observed
for the hybridoma-derived E559 (Figure 2A), the plant-derived
χE559P also comprises 2 isoforms of the light chain (indicated
by L1 and L2). Additional higher molecular weight species in
the reducing gel most likely represent incompletely reduced
antibody.

The purified χE559P was also analyzed by Western blotting,
alongside purified E559Hyb. Figure 4C shows the results of a

Figure 3. ELISA analysis of transgenic plants expressing fully assembled E559 monoclonal antibodies. Leaf discs from selected independent plant lines
expressing either (A) chimeric E559 (pL32-χE559), (B) murine E559 (pL32-muE559), or (C) codon-optimised, chimeric E559 (pTRAk-χE559), were extracted in
PBS and loaded onto ELISA plates coated with either sheep anti-human IgG1 (panels A and C) or sheep anti-mouse IgG1 (panel B) antisera. Bound an-
tibodies were detected with HRP-labeled antibodies specific for either human κ light chains (A and C) or murine κ light chains (B). Control samples were:
isotype-matched, commercially available human IgG1κ (HuIgG1κ) or mouse IgG1κ (muIgG1κ) antibodies; samples from transgenic plant lines expressing
only the heavy or light chains of the chimeric E559 (H or L, respectively in panel A); samples from transgenic plant lines expressing only the heavy or light
chains of the murine E559 (H or L, respectively, in panel B); a plant line transformed with nonrecombinant binary vector (pL32); and a wild-type (nontrans-
genic) plant. For panels A and B, plant samples were serially diluted 2-fold, whereas the isotype-matched controls were serially diluted 5-fold. In panel C, all
samples and controls were serially diluted 4-fold. Abbreviations: ELISA, enzyme-linked immunosorbent assay; PBS, phosphate-buffered saline.
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nonreducing blot, detected with antisera specific for human
(lane 1) or mouse (lane 2) heavy chains. Both χE559P and
E559Hyb samples have a high molecular weight band migrating
at the expected position for the fully assembled antibody
(indicated by the asterisk), with some additional lower molecular
weight bands, representing either assembly intermediates or
proteolytic fragments [34]. Under reducing conditions (Fig-
ure 4D), both samples showed a single band at approximately
55 kDa, corresponding to the expected size for free heavy chains.

Blotting of the light chains under nonreducing conditions
(Figure 4E ) revealed the fully assembled antibody for both
χE559P (lane 1) and E559Hyb (lane 2) as well as some additional
lower molecular weight species. Under reducing conditions
(Figure 4F ), E559Hyb (lane 2) showed 2 bands, corresponding
to the 2 glycoform variants, and χE559P (lane 1) also showed
2 light chain species. The lower band in χE559P corresponded
in size to the lower band in E559Hyb, indicating that this is also
an aglycosylated form of the light chain. The higher band in
χE559P had a slightly faster mobility compared to the gly-
cosylated isoform of E559Hyb, and this probably reflects differ-
ences in the N-linked glycan structures between plants and
mammals.

Glycoproteomic Analysis
Sequence analysis of heavy and light chains of mAb E559 pre-
dicted the presence of 2 potential N-linked glycosylation sites, a
conserved site in the antibody Fc region, and one in the VL do-
main. The plant-derived antibody was subjected to glycoproteo-
mic analysis by RP-ESI-MS (Figure 5). Glycopeptides comprising

Figure 4. Gel and Western blotting analysis of purified χE559P. Purified,
plant-derived chimeric E559 (χE559P) was analyzed by Coomassie staining
of polyacrylamide gels under nonreducing (panel A) and reducing (panel B)
conditions, and by Western blotting under nonreducing (panels C and E )
and reducing (panels D and F ) conditions. For Western blotting, the nitro-
cellulose membranes were probed with HRP-conjugated antibodies specif-
ic for heavy chains (panels C and D), or with HRP-conjugated antibodies
specific for light chains (panels E and F ). The χE559P samples (lane 1) were
probed with human-specific reagents, whereas E559Hyb samples (lane 2)
were probed with murine-specific reagents. Abbreviations: HRP, horserad-
ish peroxidase; M, molecular weight standards. Asterisks indicate the po-
sitions of the fully assembled antibodies.

Figure 5. Glycan analysis of χE559P. Purified, plant-derived chimeric
E559 was analyzed by in-gel digestion of S-carbamidomethylated sample
and RP-ESI-MS. Deconvoluted spectra of the glycopeptide elution region of
the Fc glycopeptide (A) and light chain glycopeptide (B). Masses corre-
spond to oligomannosidic and complex-type structures. Abbreviations: F,
fucose; Gn, N-acetylglucosamine; M, mannose; RP-ESI-MS, reverse-
phase electrospray ionization mass spectrometry; X, xylose.
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the Fc glycosylation site EEQFNSTFR (Figure 5A) and the VL

glycosylation site EPNGTIK (Figure 5B) were identified (N-
linked glycosylation sites are underlined). The glycan analysis re-
vealed that χE559P heavy chain displayed glycan compositions
typical of plant glycoproteins, with predominantly complex
type glycans containing xylose and fucose (GnGnXF), which
are presumed to be the β1,2-linked xylose residues attached to
the β-linked mannose and the α1,3-fucose residue linked to the
Asn-linked N-acetyl-glucosamine. The light chain glycosylation
pattern (MGnX and MMX) was also largely typical of plant gly-
coproteins, except for the lack of the α1,3-fucose residue linked to
the Asn-linked N-acetyl-glucosamine. Tandem MS results were
subjected to Mascot MS/MS ion search, which confirmed the
sample to contain essentially mAb E559.

In vitro Neutralization
The hybridoma-derived E559 (E559Hyb) and both plant-derived
antibodies (muE559P and χE559P) were tested for neutraliza-
tion of a diverse panel of lyssavirus species and strains using
the mFAVN assay. The results (Table 1) show that both
plant-derived antibodies mirrored the hybridoma-derived anti-
body in terms of breadth of neutralization. Representative virus-
es from phylogroups I and II [5, 40] were assayed for their
ability to be neutralized by the antibodies. All tested phylogroup
I viruses, covering the type species member (classical RABV),
Duvenhage virus, European bat lyssavirus types 1 and 2, and
Australian bat lyssavirus, were neutralized by all 3 antibodies
and, except for Duvenhage virus, also by the OIE+ control.
No neutralization was observed for the phylogroup II viruses
tested (Lagos bat virus and Mokola virus).

In vivo Challenge Studies
The efficacy of the χE559P in post-exposure prophylaxis was ex-
amined in hamsters injected with a lethal dose of a laboratory
strain of RABV (CVS-11; Table 2). In this in vivo protection
assay, all uninfected hamsters (group 1) survived. All hamsters
that were infected with challenge virus and received mock PEP
in the form of PBS (group 2) died after 14 days. The survival
rates for hamsters that received PEP in the form of 22.5 IU/kg
of either HRIG (group 3) or χE559P (group 4) was >50% after
14 days, although after 28 days survival dropped to zero and 11%
for HRIG and χE559P groups, respectively. None of the groups
received vaccine as part of the PEP regimen. The data show that
the χE559P antibody is at least as effective as the HRIG.

Table 1. Virus Neutralizing Activity of Plant-derived Antibodies

Phylogroup
Lyssavirus Species

(Genotype)
Virus Reference

No. Animal of Origin
Country of
Origin OIE+ muE559P χE559P E559Hyb

I RABV (1) CVS Standard stock n/a + + + +
RV51 Fox USA + + + +

RV61 Human ex dog UK (ex India) + + + +

RV108 Bat Chile + + + +
RV410 Mongoose South Africa + + + +

RV437 Raccoon Estonia + + + +

RV1237 Deer Yugoslavia + + + +
II LBV (2) RV1 Bat (E. helvum) Nigeria − − − −

MOK (3) RV4 Shrew (Crocidura
spp.)

Nigeria − − − −

I DUVV (4) RV131 Bat (N. thebaica) Zimbabwe − + + +

EBLV1 (5) RV9 Bat (E. serotinus) Germany + + + +

EBLV2 (6) RV1781 Bat (M. daubentonii) UK + + + +
ABLV (7) RV634 Fruit bat Australia + + + +

A modified fluorescent antibody virus neutralization (mFAVN) assay was used to compare the virus neutralizing activity of plant-derived chimeric E559 (χE559P),
plant-derived murine E559 (muE559P), hybridoma-derived murine E559 (E559Hyb) and pooled dog reference sera from immunized animals (OIE+) against
different lyssaviruses. Virus abbreviations: ABLV, Australian bat lyssavirus; CVS, challenge virus standard; DUVV, Duvenhage virus; EBLV1, European bat
lyssavirus type 1; EBLV2, European bat lyssavirus type 2; LBV, Lagos bat virus; MOK, Mokola virus. Virus was considered neutralized if the neutralization titer
was >0.5 IU/mL [36]. (+) indicates neutralization, (−) indicates no neutralization.

Table 2. In vivo Efficacy of χE559P for Postexposure Prophylaxis

Group (Treatment) 14 d 28 d

Group 1 (Uninfected control) 4/4 4/4

Group 2 (PBS) 0/4 0/4

Group 3 (HRIG) 5/9 0/9
Group 4 (χE559P) 6/9 1/9

Four groups of Syrian hamsters were included in the experiment. Group 1
(uninfected control) animals did not receive any viral inoculum or biologics
treatment. Groups 2, 3 and 4 were all inoculated with a genotype 1 RABV
variant (at day 0) and treated subsequently (at day 1) with either PBS (group
2), HRIG (Rabigam) (group 3), or purified χE559P mAb (group 4). Data are
presented as the no. of surviving hamsters/no. of hamsters tested.
Abbreviations: HRIG, human rabies immunoglobulin; PBS, phosphate-
buffered saline.
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DISCUSSION

Current PEP for bites by rabid animals involves the use of
blood-derived RIG, which can display batch-to-batch variation
and may be of limited availability in case of sudden mass expo-
sures. The concerns arising from the use of blood-derived prod-
ucts could be circumvented, and consistent batches of
neutralizing antibodies could be produced in large quantities
by adopting an approach based on a cocktail of rabies neutral-
izing mAbs. To this end, it is envisaged that RIG could be re-
placed by a mAb cocktail, produced using plants as the
expression platform. Two different mAb production platforms
in plants have already gained regulatory approval for human tri-
als (Pharma-Planta Consortium, personal communication to
J. Ma; [41]), demonstrating that plants are amenable to current
Good Manufacturing Practice (cGMP) compliance [42].

We compared the murine hybridoma-derived E559
(E559Hyb) with the same murine antibody produced in N. taba-
cum (muE559P), as well as a mouse-human chimeric version
(χE559P), also expressed in N. tabacum. In vitro testing of
virus neutralization demonstrated that all 3 versions of E559
were equivalent, with all 3 neutralizing phylogroup I viruses
but not the phylogroup II viruses. This is in accord with previ-
ous reports showing that neutralizing antibodies targeting phy-
logroup I viruses are not effective at neutralizing phylogroup II
viruses [40, 43].

E559 has a predicted glycosylation site in the framework re-
gion of the VL domain, which appears to be utilized, as 2 forms
of the hybridoma-derived light chain (glycosylated and aglyco-
sylated) are observed under reducing conditions, with the high-
er molecular weight form disappearing after treatment with
PNGaseF. Two isoforms were also observed in the plant ex-
pressed χE559P. The effect of the VL glycosylation is unknown,
as both glycosylated and aglycosylated forms of the light chain
were present in the hybridoma and plant preparations used for
assessment of antibody functionality.

Purified χE559P was analyzed by mass spectrometry and was
shown to be glycosylated with typical plant complex glycan
structures. It is well established that plant N-linked glycosyla-
tion differs from murine glycosylation [44], due to differences
in complex glycan processing in the Golgi compartment. Previ-
ous studies have shown that plant-derived mAbs can have dif-
ferent half-lives in animals, compared to mammalian-derived
mAbs [25, 45]. Although these differences have been attributed
to differences in glycosylation, a more recent study [46] found
no difference in the clearance rates of a RABV-neutralizing
human mAb expressed in hybridoma cells or plants. The
impact on the in vivo half-life of the glycosylation differences
between E559Hyb and χE559P will need to be addressed in
human trials.

Functionally, χE559P retained neutralization activity and had
the same breadth of lyssavirus coverage as E559Hyb. In vivo, the

chimeric antibody was as effective as a commercial HRIG prod-
uct in a hamster challenge model.

The potential for viral escape, and the need to provide pro-
tection across a broad range of lyssaviruses, means that a single
mAb will probably not be sufficient for a rabies PEP product,
and this has been recognized by various groups [15, 17, 18,
and 31]. However, the cost of mAbs produced in mammalian
cell bioreactors is currently prohibitive for rabies products in-
tended for use in resource-poor settings, so it seems unlikely
that products combining 2 or more mAbs produced using
such traditional platforms will be commercially viable outside
the developed world. Production of RABV-neutralizing mAbs
in plants raises hopes that these mAbs will be available in quan-
tities sufficient to meet the needs for PEP in rabies-endemic
areas, particularly across the developing world.
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