20 research outputs found

    Experimental study of pressure drops in coarse particle beds

    Get PDF
    Motivated by uncertainty reduction in nuclear debris beds coolability, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds, i.e., high sphericity (> 80 %) particle beds with small size dispersion (from 1 mm to 10 mm), for which no validated model exists. In this paper, experimental results are presented and analyzed in order to identify a simple correlation for single-phase flow pressure losses generated in this kind of porous media in reflooding flowing conditions, which cover Darcy to Weakly Turbulent regimes. In the literature, it has been observed that their behaviour can be accurately described by a Darcy-Forchheimer law, involving the sum of a linear term and a quadratic non-linear deviation, with respect to the filtration velocity. Expressions for the coefficients of the linear and quadratic terms are determined by assessing the possibility to evaluate equivalent diameters, i.e., characteristic lengths allowing correct predictions of the linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter

    Experimental investigation on single-phase pressure losses in nuclear debris beds: Identification of flow regimes and effective diameter.

    Get PDF
    During a severe nuclear power plant accident, the degradation of the reactor core can lead to the formation of debris beds. The main accident management procedure consists in injecting water inside the reactor vessel. Nevertheless, large uncertainties remain regarding the coolability of such debris beds. Motivated by the reduction of these uncertainties, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds. In this paper, these results are presented and analyzed in order to identify a simple single-phase flow pressure loss correlation for debris-bed-like particle beds in reflooding conditions, which cover Darcean to Weakly Turbulent flow regimes.The first part of this work is dedicated to study macro-scale pressure losses generated by debris-bed-like particle beds, i.e., high sphericity (>80%) particle beds with relatively small size dispersion (from 1 mm to 10 mm). A Darcy–Forchheimer law, involving the sum of a linear term and a quadratic deviation, with respect to filtration velocity, has been found to be relevant to describe this behavior in Darcy, Strong Inertial and Weak Turbulent regimes. It has also been observed that, in a restricted domain (Re = 15 to Re = 30) between Darcy and Weak Inertial regimes, deviation is better described by a cubic term, which corresponds to the so-called Weak Inertial regime. The second part of this work aims at identifying expressions for coefficients of linear and quadratic terms in Darcy–Forchheimer law, in order to obtain a predictive correlation. In the case of monodisperse beds, and according to the Ergun equation, they depend on the porosity of the medium, empirical constants and the diameter of the particles. Applicability of the Ergun equation for debris-bed-like particle beds has been investigated by assessing the possibility to evaluate equivalent diameters, i.e., characteristic length allowing correct predictions of linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, by less than 10% in most cases, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter, by about 15%

    Etude expérimentale et modélisation des pertes de pression lors du renoyage d’un coeur de réacteur dégradé en configuration « lit de débris »

    Get PDF
    Etude expérimentale et modélisation des pertes de pression lors du renoyage d’un coeur de réacteur dégradé en configuration « lit de débris

    Pressure drop and average void fraction measurements for two-phase flow through highly permeable porous media

    Get PDF
    The modeling of pressure drop for two-phase flows through porous media is a key point to assess the coolability of debris beds resulting from nuclear severe accidents. Models involve several parameters which are non-linear functions of the void fraction, e.g. relative permeabilities. Their identification requires that experimental data include the measurement of void fraction. This paper presents a new technique developed to reach this objective. The method is based on the use of a capacitance probe and has been validated by comparison with a weighing method. The validation has shown that the accuracy is better than 10%. The measurement device has been implemented in the CALIDE facility, at IRSN, which has been designed to perform air–water flow through debris bed. Tests have been carried out with beds made of single size 4 mm and 8 mm beads. Measurements of pressure drop and average void fraction are reported in the paper, for air and water flow rates representative of flows that would result of either the reflooding of the damaged core or the cooling of corium debris in a stagnant pool of water. Finally, the pressure drop models used in severe accident simulation codes, based on generalizations of the single-phase Ergun law, have been assessed against the new data. It has been observed that generalized Ergun laws including an interfacial drag term accurately predict the pressure drop and the void fraction for flows with a zero net water velocity

    Experimental study of single-phase pressure drops in coarse particle beds

    No full text
    International audienceMotivated by uncertainty reduction in nuclear debris beds coolability, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds, i.e., high sphericity (> 80 %) particle beds with small size dispersion (from 1 mm to 10 mm), for which no validated model exists. In this paper, experimental results are presented and analyzed in order to identify a simple correlation for single-phase flow pressure losses generated in this kind of porous media in reflooding flowing conditions, which cover Darcy to Weakly Turbulent regimes. In the literature, it has been observed that their behaviour can be accurately described by a Darcy-Forchheimer law, involving the sum of a linear term and a quadratic non-linear deviation, with respect to the filtration velocity. Expressions for the coefficients of the linear and quadratic terms are determined by assessing the possibility to evaluate equivalent diameters, i.e., characteristic lengths allowing correct predictions of the linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter

    Modeling of Inertial Multi-Phase Flows through High Permeability Porous Media: Friction Closure Laws

    Get PDF
    International audienceDuring a severe accident in a nuclear reactor, the core may be fragmented in a debris bed made of milli- metric particles. The main safety procedure consists in injecting water into the core leading to a steam- water flow through a hot porous medium. To assess the coolability of debris bed, there is a need for an accurate two-phase flow model including closure laws for the pressure drop. In this article, a new model for calculating pressure losses in two-phase, incompressible, Newtonian fluid flows through homogeneous porous media is proposed. It has been obtained following recent developments in theoretical averaging of momentum equations in porous media. The pressure drops in the momentum equations are determined by eight terms corresponding to the viscous and inertial friction in liquid and gas phases, and interfa- cial friction between the phases. Analytical correlations with the void fraction have been formulated for each term using an original experimental database containing measurements of pressure drops, average velocities and void fractions from the IRSN CALIDE experiment. The new model has then been validated against the experimental data for various liquid and gas Reynolds numbers up to several hundreds. Fi- nally, it has been compared to the models, usually used in the “severe accident”codes, which are based on a generalization of the Ergun law for multi-phase flows. The results show that the new model gives a better prediction both for the pressure drop and for the void fraction

    Experimental study of single-phase pressure drops in coarse particle beds

    No full text
    International audienceMotivated by uncertainty reduction in nuclear debris beds coolability, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds, i.e., high sphericity (> 80 %) particle beds with small size dispersion (from 1 mm to 10 mm), for which no validated model exists. In this paper, experimental results are presented and analyzed in order to identify a simple correlation for single-phase flow pressure losses generated in this kind of porous media in reflooding flowing conditions, which cover Darcy to Weakly Turbulent regimes. In the literature, it has been observed that their behaviour can be accurately described by a Darcy-Forchheimer law, involving the sum of a linear term and a quadratic non-linear deviation, with respect to the filtration velocity. Expressions for the coefficients of the linear and quadratic terms are determined by assessing the possibility to evaluate equivalent diameters, i.e., characteristic lengths allowing correct predictions of the linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter

    Sintering of a UO2 - PuO2 freeze-granulated powder under reducing conditions

    No full text
    International audienceA freeze-granulated powder made of UO 2 and PuO 2 , containing 15 mol% of Pu/(U+Pu), was sintered under reducing conditions (oxygen potential of-468 kJ/mol at 1700 °C). Constructing trajectory, using the constant rates of heating and the master sintering curves approaches and calculating the diffusion coefficients by exploiting the results of the sintering runs enabled to propose that densification was probably controlled by grain boundary diffusion and grain growth by the grain boundaries. An activation energy around 525 kJ/mol was obtained for densification, which was close to what was reported for grain boundary diffusion of plutonium cations in U 0.55 Pu 0. 45 O 2-x polycrystalline materials. The sintered microstructure appeared homogeneous regarding the plutonium and uranium cations spatial distribution. By combining the master sintering curve approach for anisothermal and isothermal conditions, it was possible to predict the evolution of the relative density over time for any type of thermal path
    corecore