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a b s t r a c t 

During a severe accident in a nuclear reactor, the core may be fragmented in a debris bed made of milli- 

metric particles. The main safety procedure consists in injecting water into the core leading to a steam- 

water flow through a hot porous medium. To assess the coolability of debris bed, there is a need for an

accurate two-phase flow model including closure laws for the pressure drop. In this article, a new model

for calculating pressure losses in two-phase, incompressible, Newtonian fluid flows through homogeneous

porous media is proposed. It has been obtained following recent developments in theoretical averaging of

momentum equations in porous media. The pressure drops in the momentum equations are determined

by eight terms corresponding to the viscous and inertial friction in liquid and gas phases, and interfa- 

cial friction between the phases. Analytical correlations with the void fraction have been formulated for

each term using an original experimental database containing measurements of pressure drops, average

velocities and void fractions from the IRSN CALIDE experiment. The new model has then been validated

against the experimental data for various liquid and gas Reynolds numbers up to several hundreds. Fi- 

nally, it has been compared to the models, usually used in the “severe accident” codes, which are based

on a generalization of the Ergun law for multi-phase flows. The results show that the new model gives a

better prediction both for the pressure drop and for the void fraction.

1. Context

The modeling of multi-phase flows in porous media is of great 

interest in many scientific and industrial fields, such as chemical 

engineering, petroleum engineering, environmental sciences or ge- 

ology. The pore-scale physics is very complicated, on one hand be- 

cause of the multiple variables affecting the flow (Capillary, Bond 

and Reynolds numbers, wettability, viscosity ratio, ...), on the other 

hand because of the complex pore-scale geometry. Most of the lit- 

erature is concerned by creeping flows in media of moderate or 

low permeability for which capillarity is the dominant process. 

Two-phase flows in high permeability media (typically a pore-scale 

characteristic length of several millimeters or larger), however, are 

encountered in many applications, for instance, in chemical engi- 

neering (packed bed with large grain size, structured packings, ...), 

nuclear safety. This latter application has triggered several stud- 

ies in the wake of the Three Mile Island-2 reactor accident in 
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1979 ( Broughton et al., 1989 ). In Light Water Reactor (LWR) nu- 

clear safety analysis, specific models are required for describing 

boiling water-steam flows through particle beds in order to assess 

the coolability of nuclear fuel debris beds that may be formed dur- 

ing a severe accident in a nuclear reactor, after mechanical failure 

of the fuel assemblies. For example, the formation of a several-tons 

debris bed has been reported after the Three Mile Island-2 reactor 

accident, the bed being characterized by millimetric particle sizes 

and a porosity ranging from 0.35 to 0.55. 

A nuclear fuel debris bed, referred to below as debris bed , can 

be described as a hot porous medium, where substantial amounts 

of energy are released due to the radioactive decay of fission prod- 

ucts. The generated heat has to be extracted from the debris bed 

in order to stop the progression of the accident. The main safety 

procedure consists in injecting water into the bed. Given the high 

permeability of the porous bed and the strong thermal effects, 

the resulting flow of steam and water through such a hot porous 

medium can not be predicted on the basis of current knowledge 

and understanding. Therefore, accurate models are required to re- 

duce the uncertainties concerning the assessment of the debris 

coolability. 



Nomenclature 

Latin 

d Diameter of the particles used in experiments (m) 

F i Interfacial friction term in generalized Ergun 

models (Pa/m) 

F ββ Inertial correction tensor for the β-phase 
F ββ Component of F ββ for 1D flows 

f ββ Empirical function in the model proposed for F ββ

F βγ Inertial coupling tensor of the γ phase over the 

β-phase ( β 6 = γ ) 
F βγ Component of F βγ for 1D flows 

f βγ Empirical function in the model proposed for F βγ

g Acceleration due to gravity (m/s 2 ) 

K Permeability (m 2 ) 

K β Relative permeability for the β-phase (-) 
K ββ Permeability tensor for the β-phase 
K ββ Component of K ββ for 1D flows 

k ββ Empirical function in the proposed model for K ββ

K βγ Viscous coupling tensor of the γ phase over the 

β-phase ( β 6 = γ ) 
K βγ Component of K βγ for 1D flows 

k βγ Empirical function in the proposed model for K βγ

n Exponent appearing in the expression of f lg (em- 

pirical) 

〈 p β〉 β , P β Intrinsic average pressure within the β-phase
(Pa) 

dP / dz Average pressure gradient in experiments (Pa/m) 

Re β Reynolds number of the β-phase (-) 
〈 v β〉 Average velocity of the β-phase (filtration veloc- 

ity) in a 1D flow (m/s) 

〈 v β〉 Average velocity vector of the β-phase 

Greek 

α Void fraction, or gas saturation, in a gas-liquid flow 

(-) 

ε Porosity (-) 

η Passability (m) 

ηβ Relative passability for the β-phase (-) 
µβ Dynamic viscosity of the β-phase (Pa.s) 

ρβ Density of the β-phase (kg/m 3 ) 

Integral 0D/1D models for steam-water boiling flows in porous 

media, involving averaged conservation equations - mass, en- 

ergy, momentum- and closure laws -for the energy and momen- 

tum equations-, have been developed and extended afterwards to 

2D/3D situations, assuming homogeneity and isotropy conditions 

for the debris bed ( Fichot et al., 2006 ). Their validation is based on 

predictions of global parameters (steam production, bed tempera- 

ture) measured in integral experiments of debris bed cooling: dry- 

out heat flux, in dry-out experiments ( Decossin, 1999; Dhir and 

Catton, 1977; Hardee and Nilson, 1977; Lipinski, 1984 ), or quench 

front progression velocity, in reflood experiments -top flooding 

( Cho et al., 1984; Ginsberg et al., 1982; Tung and Dhir, 1988; Tutu 

et al., 1984b ) or bottom flooding ( Hall and Hall, 1981; Tung and 

Dhir, 1986; Tutu et al., 1984a ), and global steam production. The 

available models are based on the use of macro-scale equations for 

energy or momentum balances based on separate closures, e.g. the 

macro-scale momentum equations are those developed for isother- 

mal conditions at the closure level, i.e., the macro-scale structure 

and the related effective properties are those of isothermal flows, 

while the macro-scale equations are used of course under non- 

isothermal conditions. While this separation in the upscaling from 

the pore-scale to macro-scale may be questionable and has not 

been fully validated, it seems to produce acceptable predictions 

( Fichot et al., 2006 ). At this time, given the range of parameters 

involved in flow through highly permeable media, especially in the 

context of nuclear safety, a validation of the uncoupled closures 

has not even been obtained yet, because of the lack of experiments 

where thermal and mechanical effects are separated. 

Indeed, the experimental data cited above have been performed 

mainly under atmospheric pressure in thermal-hydraulic condi- 

tions representative of a severe accident in a nuclear reactor. They 

correspond to water filtration velocities ranging from 5 mm/s to 

32 mm/s and gas filtration velocities ranging from 1 m/s to 7 m/s 

( Clavier, 2015 ). In this context, a new experimental dataset has 

been recently reported by Chikhi et al. (2016) , which contains mea- 

surements of pressure drop and void fraction versus velocities for 

high velocity air-water flows through particle beds representative 

of debris beds. These data emphasized some lack of predictabil- 

ity of the current closure laws used in severe accident simulation 

codes, and pointed out the need of new models to describe high 

velocity two-phase flows through debris beds. The objective of this 

article is to present a new modeling approach for such flows. The 

mathematical form of the model is obtained from recent results 

based on volume averaging of the local conservation equations and 

will be presented in Section 2 . Using experimental data presented 

in Section 3 , new correlations for the effective parameters in the 

model will be derived in Section 4 and validated in Section 5 . 

2. Theoretical background

2.1. Macroscopic momentum equations for two-phase flows in porous 

media 

In nuclear safety studies, considering the thermal-hydraulic 

conditions and range of permeability of the debris beds, relatively 

high, substantial inertial effects and small capillary effects are ex- 

pected. Thus, the models generally used in severe accident codes 

are based on heuristic generalizations of Darcy–Forchheimer equa- 

tions to two-phase flows ( Fichot et al., 2006; Lipinski, 1981; Reed 

et al., 1986; Schulenberg and Müller, 1987; Tung and Dhir, 1988 ). 

A possible although not unique formulation of these models is: 

−
∂ 〈 p l 〉 

l

∂z 
− ρl g = 

µl 
KK l 

〈 v l 〉 + 
ρl

ηηl
〈 v l 〉 

2 
−

F i 
ε(1 − α) 

(1) 

−
∂ 〈 p g 〉 

g

∂z 
− ρg g = 

µg

KK g 
〈 v g 〉 + 

ρg

ηηg 
〈 v g 〉 

2 
+ 

F i
εα

(2) 

where 〈 p β〉 β denotes the intrinsic average pressure, 〈 v β〉 is the av- 

erage velocity, or filtration velocity, ρβ and µβ are the density and 

the viscosity of the fluids, the index β denoting the phase l for the 

liquid and g for the gas. Parameters ε and α respectively denote 

the porosity of the medium and the void fraction. Porosity is the 

ratio between the volume of the pore space and the total volume 

occupied by the porous medium. In a gas-liquid flow, void fraction 

designates the volume fraction of the pore space which is occupied 

by the gas. 1 The norm of the gravity acceleration (upward z -axis) 

is noted g . Parameters K and η denote the permeability and pass- 

ability of the debris bed, as defined in Ergun’s law ( Ergun, 1952 ). 

K l and K g are the relative permeabilities, ηl and ηg are the relative 

passabilities , and they all depend at least on the fluid saturation. 

The term F i was introduced heuristically to account for the effect 

1 The notion of void fraction is largely employed in nuclear engineering appli- 

cations. In other fields of applications, the notion of saturation may be preferred,

especially when the flow does not involve a gaseous phase (liquid-liquid flows, for

instance). Saturation of phase n is defined as the volume fraction of the pore space

occupied by phase n . Thus, in gas-liquid flows, the void fraction α is obviously equal

to the gas saturation S g , while the liquid saturation S l is equal to 1 − α. 



Table 1

Generalized Ergun models without interfacial drag.

Model Lipinski (1981) Reed (1982) Hu and Theofanous (1991)

K g α3 α3 α3

ηg α3 α5 α6

Kl ( 1 − α) 
3 

( 1 − α) 
3 

( 1 − α) 
3 

ηl ( 1 − α) 
3 

( 1 − α) 
5 

( 1 − α) 
6 

Fi 0 0 0

of friction between the two liquids. If one drops the quadratic term 

and the friction term in Eqs. (1) and (2) , one recovers the classi- 

cal generalized Darcy’s law used extensively in the case of creep- 

ing flow dominated by capillary forces, as proposed heuristically 

by Muskat (1946) . The additional terms try to account for inertia 

and friction effects. As will be discussed later, they do not entirely 

translate macroscopically the pore-scale physics as emphasized by 

upscaling theories. 

Several expressions, reported in Tables 1 and 2 2 , have been pro- 

posed for relative permeabilities, relative passabilities and interfa- 

cial friction. Relative permeabilities and passabilities are supposed 

to depend on the void fraction only. Interfacial friction, if consid- 

ered by the model, depends on the void fraction, the velocities, and 

the physical properties of the fluids. Liquid and gas average pres- 

sures are linked by an averaged capillary pressure relation, which 

is generally assumed to be small for such highly permeable media, 

thus leading to an identity between liquid and gas pressure gradi- 

ents: 

∂ 〈 p l 〉 
l

∂z 
= 

∂ 〈 p g 〉 
g

∂z 
. (3) 

Similar approaches have been used in petroleum engineering 

applications for describing high velocity flows in fractures or near 

wellbores ( Evans and Evans, 1988; Evans et al., 1987; Liu et al., 

1995 ). Some attempt has also been made to adapt the Lockhart–

Martinelli approach ( Lockhart and Martinelli, 1949 ) to porous me- 

dia ( Fourar and Lenormand, 2001; Fourar et al., 2001 ). Nowadays, 

generalized Darcy–Forchheimer models have become the standard 

approach for high velocity flows in nuclear safety analysis ( Bürger 

et al., 2006; Kulkarni et al., 2010; Naik and Dhir, 1982; Schmidt, 

2007 ), chemical engineering ( Nemec et al., 2001; Saez et al., 1986 ) 

and petroleum engineering applications ( Fourar and Lenormand, 

20 0 0; Jamialahmadi et al., 2005 ). 

However, the cases where these models fail to correctly rep- 

resent the pressure drop velocity and void fraction velocity re- 

lationships are frequent, and particularly for nuclear debris beds, 

as recently pointed out by Taherzadeh and Saidi (2015) and 

Chikhi et al. (2016) . Two reasons may be given to explain this. The 

first one is related to the current understanding of the upscaling 

of multi-phase flows in porous media. Indeed, high velocity single- 

phase flows have received considerable effort s in theoretical analy- 

sis during the last decades ( Lasseux et al., 2011; Mei and Auriault, 

1991; Quintard and Whitaker, 1994a; 1994b; 1994c; 1994d; 1994e; 

Whitaker, 1986a; 1996; Wodié and Levy, 1991 ). Results show the 

existence of several regimes that cannot be represented exactly 

by a quadratic Forchheimer extension to Darcy’s law: departure 

from linear Darcy’s law involves a weakly inertia regime requir- 

ing the introduction of a cubic term, fully developed laminar in- 

ertia flows may reach a regime close to the classical quadratic 

Forchheimer law for sufficiently disordered media, but this is in 

general only an approximation. Indeed, transition regimes or weak 

turbulent flows as illustrated in Soulaine and Quintard (2014) in 

2 The value of n and the expressions of A ( α) and B ( α) in the Tung&Dhir model

depend on α, defining several flow regimes. See Tung and Dhir (1988) for more

details.

the case of structured packings may require the introduction of 

irrational expressions. The various regimes may be observed ex- 

perimentally, even in the context of debris beds, as illustrated in 

Clavier et al. (2015) . However, it was also observed that, provid- 

ing one accepts an approximation of up to 10%, the results for 

mm to cm particles of nearly spherical shape can be cast into the 

classical quadratic Forchheimer law. Similar theoretical and exper- 

imental support is still lacking for multi-phase flows. In this con- 

text, generalized Forchheimer models, introduced on an empirical 

basis, have been extensively used for their simplicity and conve- 

nience, because their degeneration at vanishing liquid and/or air 

Reynolds number correctly restores Forchheimer’s law, considered 

as an acceptable model in most cases (see above discussion). It is 

important however to remember that their mathematical structure 

did not receive as much theoretical understanding as the case of 

single-phase flows. 

The second reason is associated to the lack of relevant and 

available experimental data. Indeed, validation of two-phase flow 

pressure drop models requires on-line measurements of pressure 

drop, velocities and void fraction in representative conditions. Such 

measurements are difficult, especially for void fractions. As a con- 

sequence, very few data have been reported in the literature for 

flow in highly permeable media. The only relevant data (for in- 

ertial two-phase flows in particle beds) have been proposed by 

Tutu et al. (1983) , and contain measurements of pressure drops, 

gas velocities and void fraction for zero-liquid rate only. Thus, pres- 

sure drop models have been validated either in non-representative 

conditions, for example from low velocity -viscous regime- exper- 

iments through sand as in Lipinski (1984) , or indirectly, from dry- 

out heat flux experiments, as in Hu and Theofanous (1991) , by cou- 

pling the pressure drop model to heat exchange and mass transfer 

models. 

Recently, a new theoretical model has been proposed for in- 

ertial two-phase flows in porous media. By applying the vol- 

ume averaging method on the two-phase Navier–Stokes bound- 

ary value problem, and on the basis of previous works 

by Whitaker (1986b ), Torres (1987) , Whitaker (1994) and 

Lasseux et al. (1996) dedicated to viscous two-phase flows in 

porous media, Lasseux et al. (2008) derived new macroscopic mo- 

mentum equations for inertial two-phase flows which are written 

as 

〈 v l 〉 = −
K ll 

µl 
·
(

∇ 〈 p l 〉 
l 
− ρl g

)

− F ll · 〈 v l 〉

+ K lg · 〈 v g 〉 − F lg · 〈 v g 〉 (4) 

〈 v g 〉 = −
K gg 

µg 
·
(

∇ 〈 p g 〉 
g 
− ρg g

)

− F gg · 〈 v g 〉

+ K gl · 〈 v l 〉 − F gl · 〈 v l 〉 (5) 

Several assumptions where adopted to arrive at this result. The 

most drastic, in view of the application to boiling flows, is the as- 

sumption of a quasi-steady state at the closure level, i.e., locally at 

the pore-scale it is assumed that the pressure and velocity fields 

are not time-dependent and the interface evolves slowly. Such as- 

sumptions are at the core of almost all published two-phase flow 

models. The fact that these models actually work well, at least to 

some degree of accuracy, lies on the existence of some ergodic- 

ity between space and time, which is partially supported by pore- 

scale experiments ( Sapin et al., 2016 ) and some macro-scale exper- 

iments ( Chikhi et al., 2016 ). Unsteady closure and/or macro-scale 

equations have been proposed in the literature ( Cueto-Felgueroso 

and Juanes, 2009; Gray and Hassanizadeh, 1991; Hassanizadeh and 

Gray, 1993; Hilfer, 1998; Kalaydjian, 1987; Panfilov and Panfilova, 

2005; Quintard and Whitaker, 1990; Reeves and Celia, 1996 ). They 

are still in developments and, in addition, they were not developed 



Table 2

Generalized Ergun models with interfacial drag.

Model Schulenberg and Müller (1987) Tung and Dhir (1988)

K g α3 
(

1 −ε 
1 −αε 

)4 / 3 
αn

ηg

{

if α < 0 . 3 : α6

if α > 0 . 3 : 0 . 1 α4

(

1 −ε 
1 −αε

)2 / 3 
αn

Kl ( 1 − α) 
3 

( 1 − α) 
3 

ηl ( 1 − α) 
5 

( 1 − α) 
3 

Fi 350 α(1 − α) 7 ( ρl − ρg ) gε 
ρl K 
σlg η

(

〈 v g 〉 
α −

〈 v l 〉 
1 −α

)2 
A ( α)

(

〈 v g 〉 
α −

〈 v l 〉 
1 −α

)

+ B ( α) 

(

〈 v g 〉 
α −

〈 v l 〉 
1 −α

)2 

for inertia flows. Therefore, the current most generalized model for 

our purposes is the one described by Eqs. (4) and (5) . 

These equations include 8 unknown tensorial functions. K ll and 

K gg are the permeability tensors , and represent the main viscous 

dissipation due to the creeping flow of each fluid phase, i.e., they 

are equal to the intrinsic permeability tensor when the saturation 

of the other phase is zero. K lg and K gl are the viscous coupling ten- 

sors , representing the mapping of the creeping flow viscous drag 

at the liquid-gas interface over the velocity of the other phase. F ll 
and F gg are the main inertial correction tensors , i.e., they revert to 

the one-phase flow term when the saturation of the other phase 

is zero. Following the above discussion about Forchheimer’s cor- 

rection, these terms do not necessarily depends linearly on the 

velocity. Indeed, the theory even tells that they may depend also 

on both velocities. Finally, F lg and F gl are the inertial coupling cor- 

rection tensors , representing the mapping onto the other phase 

velocity of the additional drag due to inertia. All terms depend 

on saturation and potentially on the velocities. A theoretical rela- 

tion between the creeping flow viscous terms has been derived by 

Lasseux et al. (1996) : 

µg K gl · K ll = µl K gg · K 
T 
lg (6) 

It should be noted that the contribution of the additional iner- 

tial terms can be assumed to be negligible compared to the creep- 

ing flow viscous ones when gas and liquid Reynolds numbers are 

small: a feature that will play an important role in the identifica- 

tion procedure proposed in this paper. All the terms can be deter- 

mined by resolving complex boundary value problems, which is a 

difficult task not undertaken so far for complex porous media. 

For 1D flows through homogeneous and isotropic media, tensor 

terms and vectors become scalars, and partial equivalences can be 

made between this model and the generalized Darcy-Forchheimer 

model. If we assume quadratic inertia terms, the viscous and iner- 

tial dissipation terms can be related to the relative permeabilities 

and passabilities as follows 

K ll = KK l (7) 

K gg = KK g (8) 

F ll = 
ρl 

µl 

K 

η

K l 
ηl 

〈 v l 〉 (9) 

F gg = 
ρg 

µg 

K 

η

K g 
ηg 

〈 v g 〉 (10) 

From this point of view, Eqs. (4) and (5) may be considered 

as more general forms of Darcy-Forchheimer models, for multi- 

dimensional flows and non isotropic or homogeneous media, based 

on a more elaborated theoretical justification. However, it should 

be pointed out that the viscous and inertial coupling tensors can- 

not be written in a consistent manner in terms of the F i term in 

Eqs. (1) and (2) . Such an equivalence would indeed require the 

following condition:

−( 1 − α) 
[

−µl K 
−1
ll 

· K lg · 〈 v g 〉 + µl K 
−1
ll 

· F lg · 〈 v g 〉
]

= α
[

−µg K 
−1
gg · K gl · 〈 v l 〉 + µg K 

−1
gg · F gl · 〈 v l 〉 = 

F i
ε 

. (11) 

This relation requires, to be verified, F i = K lg = F lg = K gl = F gl = 0 . 

The two approaches may therefore be compatible when interfa- 

cial drag is zero or negligible, i.e. when it is not necessary to use 

these terms in the models. It should be noted that this situation 

may correspond to creeping flows in low permeability media, al- 

though this remains controversial ( Rose, 20 0 0 ). However, in the 

case of high permeability media, such as the debris beds consid- 

ered in this work, observations ( Chikhi et al., 2016; Tutu et al., 

1983 ) have shown that coupling terms have a significant influence, 

even for the small Reynolds numbers, as recently pointed out by 

Chikhi et al. (2016) . Therefore, the drag term in Eqs. (1) and (2) and 

the coupling terms in Eqs. (4) and (5) are not zero, and Eq. (11) re- 

veals a contradiction between these two approaches, since it would 

require F i to be both positive and negative, at least in the Darcy 

regime, which is impossible. Hence, Eqs. (4) and (5) constitute an 

original approach in the treatment of interfacial drag in two-phase 

flows through porous media. 

2.2. Adimensionized equations 

The 1D form of Eqs. (4) and (5) may be presented in an adimen- 

sionalized form, that may be useful to generalize the results. As 

suggested by several authors ( Dye et al., 2013; Nemec and Levec, 

2005 ), they can be re-written in terms of the Reynolds numbers 

for the liquid phase and the gas phase: 

Re β = 
ρβd 

〈

v β

〉

µβ (1 − ε) 
, β = g, l , (12) 

and the Galilei numbers for the liquid phase and the gas phase: 

Ga β = 

(

∇ p β
β

+ ρβg 
)

ρβd 
3 
St 

µβ (1 − ε) 3 
, β = g, l . (13) 

The adimensionalized equations, after calculation, are: 

Re l = −K ∗ll Ga l − F ∗ll Re l + K ∗lg Re g − F ∗lg Re g (14) 

Re g = −K ∗gg Ga g − F ∗gg Re g + K ∗gl Re l − F ∗gl Re l , (15)

where K ∗
αβ

are the adimensionalized unknown functionals given 

by: 

K ∗ll = 
(1 − ε) 2

d 2 St 
K ll K ∗gg = 

(1 − ε) 2

d 2 St 
K gg (16) 

K ∗lg = 
ρl 

ρg 

µg 

µl 
K lg K ∗gl = 

ρg 

ρl 

µl 

µg 
K gl (17) 

F ∗ll = F ll F ∗gg = F gg (18) 



F ∗lg = 
ρl 

ρg 

µg 

µl 
F lg F ∗gl = 

ρg 

ρl 

µl 

µg 
F gl (19) 

The procedure detailed below can be applied either to these 

adimensionalized equations or to their original dimensional form. 

For the on-coming developments, the use of the dimensional form 

( Eqs. (4) and (5) ) allows a more clear and direct visualization of the 

different effects, in particular those of the particle-size and of flow 

inertia. Therefore, the procedure will be given in the dimensional 

form. The final model can be transposed in adimensionalized form 

by use of Eqs. (16) –(19) . 

2.3. Main issues in model derivation 

The main difficulty to obtain a working model from Eqs. (4) and 

(5) lies in the identification of the 8 unknown functionals of the 

void fraction α, the velocities 〈 v l 〉 and 〈 v g 〉 , the characteristics of
the medium (porosity, permeability) and the physical properties of 

the fluids (viscosities, densities). There have been attempts to work 

this inverse problem when inertia is negligible, i.e. F ll = F gg = F gl = 

F lg = 0 , by use of mathematical methods ( Chardaire-Rivière et al., 

1992; Chavent et al., 1980; Ewing et al., 1994; Nordtvedt et al., 

1993 ). All these papers have shown that identifying the function- 

als was a very challenging task. In this work, the higher number 

of functionals makes the identification even more complicated. In 

addition, we know that there are several regimes, with different 

dependencies upon saturation and velocities. It has been found in 

the case of single-phase flows that a full inverse method with an 

objective function involving all the regimes may lead to an incor- 

rect identification of some of the regimes. For instance, the lin- 

ear regime value may be influenced, contrary to the theory, by 

points in the inertia regimes. This could be avoided by tweaking 

the objective function, but it was found that this is less accurate 

and efficient than a separated determination, since we know that 

the Darcy regime is independent of the inertia terms ( Clavier et al., 

2016 ). To avoid these difficulties, a segregated identification proce- 

dure is proposed in this work. The methodology will be presented 

in detail and developed in Section 4 . 

The identification requires experimental databases including 

measurements of pressure drops, void fractions and velocities, re- 

gardless of the method used. Very few data have been reported in 

the literature for inertial two-phase flows through porous media. 

Until very recently, in the context of nuclear safety, the only avail- 

able data were those proposed by Tutu et al. (1983) , which contain 

measurements for zero-net water velocity only. This database was 

therefore inadequate to identify all the terms of Eqs. (4) and (5) . In 

order to fill this lack of information, an original database has been 

proposed by Chikhi et al. (2016) for non-zero water velocities. 

3. Experimental data

As already explained, the identification of the model requires 

experimental databases containing measurements of velocities, 

pressure drops and void fractions. Such data are very scarce, 

mostly because of the technological difficulty of the void fraction 

measurement. The only relevant experimental data for this study 

are those proposed by Tutu et al. (1983) and Chikhi et al. (2016) , 

which involve steady-state air-water flows through single-sized 

spherical particle beds. In this section, these data will be briefly 

presented and commented. 

Experiments of Tutu et al. (1983) have been performed in 

zero-net water velocity conditions. Pressure drops and void frac- 

tions have been measured for gas velocities ranging from 0 to 

0.5 m/s. Three beds have been studied. The diameters of the par- 

ticles are 3.18 mm, 6.35 mm and 12.7 mm. In experiments of 

Chikhi et al. (2016) , both zero- and non-zero-net water velocities 

have been investigated. While the gas velocities range from 0 to 

0.5 m/s, the water velocities range from 0 to 32 mm/s. Two beds 

have been studied, with 4 mm and 8 mm particles. 

Considering the investigated range of velocities and particle 

sizes, the corresponding gas Reynolds number is between 0 and 

500, while the liquid Reynolds number is between 0 and 300, the 

Reynolds number for a β-phase ( β = l, g) being defined as Eq. (12) . 

Fig. 1 a presents the pressure drop measurements of 

Tutu et al. (1983) and those of Chikhi et al. (2016) for zero- 

net liquid velocity. Pressure drop is normalized by the liquid 

hydrostatic pressure gradient ρ l g , so that it is equal to 1 for null 

gas velocity. Each series corresponds to a different particle size. 

If this normalized pressure drop is smaller than 1, this means 

that air creates an upwards friction force on water. For low gas 

velocities, it decreases with the same slope regardless of the 

particle diameter. After reaching a minimum value, which depends 

on the particle diameter, it increases and seems to tend to 1 for 

very high gas velocities, at least for 3.18 mm and 4 mm particles. 

Void fraction measurements for zero-liquid velocity experi- 

ments are presented in Fig. 1 b. As for pressure drops, each se- 

ries corresponds to a different particle size. It should be noted 

that the data reported here correspond to global void fractions, 

i.e., average values in space and time, in steady-state flows. The

measurement uncertainty is of the order of ± 10 % for the data 

of Chikhi et al. (2016) , as reported in their article. However, uncer- 

tainties are not provided by Tutu et al. (1983) for their data. 

Void fraction increases with gas velocity, and the following di- 

mensional correlation is able to predict all data within 10 %: 

α = 0 . 83 〈 v g 〉 
1 / 3 (20) 

This correlation does not involve a parameter depending upon 

the particle diameter. Given the void fraction measurement incer- 

titude and accuracy, it is not possible to quantify precisely such 

a dependence. One should remember, however, that a variation of 

the void fraction by about 0.10 may lead to significant changes in 

the non-linear parameters involved in the two-phase flow model. 

Therefore, further improvements in the experimental and identifi- 

cation procedures would be rather interesting from a fundamental 

and practical point of view. 

Results from non-zero water velocity experiments by 

Chikhi et al. (2016) are presented in Figs. 1 c–f. 

Figs. 1 c presents the pressure drop measurements for 4 mm 

particle bed. As in Fig. 1 a, pressure drop is normalized by the liq- 

uid hydrostatic pressure gradient. Each series corresponds to a con- 

stant liquid velocity. For low water velocities - 〈 v l 〉 < 4 mm/s, or

Re l < 29 - a similar behavior to the zero-net water velocity is ob- 

served. The pressure gradient first decreases below the hydrostatic 

pressure gradient with increasing air flow rate. After reaching a 

minimum, it increases for higher air flow rate. For higher water 

velocity, the normalized pressure gradient is always greater than 1 

and increases continuously with the air velocity. 

Void fraction measurements for 4 mm particles are presented in 

Fig. 1 d. As for pressure drops, each series correspond to a constant 

water velocity. Within the 10 % incertitude, it appears that water 

velocity has a weak influence on the void fraction, which mainly 

depends on the gas velocity. Eq. (20) is still acceptable. 

Data concerning 8 mm particles are presented in Fig. 1 e - pres- 

sure drops - and 1 f - void fraction. Similar behaviors to the case 

of 4 mm particles are observed, and Eq. (20) remains acceptable. 

4. Derivation of a new model

The ability of Eqs. (4) and (5) to reproduce the experimental 

data presented in the previous section will now be assessed, and 

correlations for viscous and inertial correction terms will be deter- 



Fig. 1. Experimental data for inertial two-phase flows through spherical particle beds (from Tutu et al. (1983) and Chikhi et al. (2016) ).

mined. Eight unknown functionals ( Table 3 ) have to be determined 

from two equations only. 

The method proposed here for their identification is not triv- 

ial and is based on strong assumptions that will be detailed in the 

course of the following developments. The main difficulties are the 

number of unknown parameters, and the fact that their formal ex- 

pressions in terms of the flow variables (saturation and velocities) 

are not a priori defined. 

4.1. Initial remarks and assumptions 

It is of fundamental importance to make the two following re- 

marks concerning the structure of Eqs. (4) and (5) and the defini- 

tion of inertial terms. 

• Remark 1: In case of zero net water velocity, and since we

are interested in 1D flows through isotropic and homogeneous

Table 3

Unknown terms in Eqs. (4) and (5) to be determined from ex- 

periments.

Permeability Inertial Viscous Inertial coupling

corrections coupling correction

K ll F ll K lg F lg
K gg F gg K gl F gl

media, these equations simplify into: 

0 = −
K ll
µl 

(

∂ 〈 p l 〉 
l

∂z 
+ ρl g + K lg 〈 v g 〉 − F lg 〈 v g 〉 (21) 

〈 v g 〉 = −
K gg
µg 

(

∂ 〈 p g 〉 
g

∂z 
+ ρg g 

)

− F gg 〈 v g 〉 (22) 

• Remark 2: Inertia tends to be negligible for sufficiently small

Reynolds numbers, or small velocities. Therefore, in that case,



macroscopic equations simplify to: 

〈 v l 〉 = −
K ll
µl 

(

∂ 〈 p l 〉 
l

∂z 
+ ρl g + K lg 〈 v g 〉 (23) 

〈 v g 〉 = −
K gg
µg 

(

∂ 〈 p g 〉 
g

∂z 
+ ρg g + K gl 〈 v l 〉 (24) 

It should be emphasized that, although it is clear that a “small”

velocity means that the viscous effects prevail, its precise defini- 

tion in terms of Reynolds number remains unclear, as the appear- 

ance of inertial effects in multi-phase flows through porous media 

did not undergo enough theoretical and experimental studies. In 

single-phase flows, it is generally assumed that the viscous regime, 

or Darcy regime, occurs for Reynolds numbers of the order of 1–10 

at maximum ( Chauveteau and Thirriot, 1967; Lasseux et al., 2011; 

Mei and Auriault, 1991 ), at least for sufficiently disordered media, 

but there is no proof -experimental or theoretical- that this order 

of magnitude remains valid for two-phase flows. In the following 

developments, some values will be proposed for appearance of in- 

ertia effects, on the basis of experimental observations, but further 

theoretical studies should be conducted on these aspects before 

any definitive conclusion. 

The derivation of the model then requires two assumptions for 

the formal dependence of the unknown terms to velocities and 

void fraction. 

• The form of the permeability and the inertial correction terms

is chosen so that their behavior correctly restores the Darcy-

Forchheimer law in single-phase flows - α → 0 or α → 1,

which has been recognized to correctly represent the available

data for debris beds with a 10% incertitude Clavier et al. (2016) .

This implies:

K ll = Kk ll (α) lim 
α→ 0

k ll = 1 (25) 

K gg = Kk gg (α) lim 
α→ 1

k gg = 1 (26) 

F ll = 
ρl 

µl 

K 

η
〈 v l 〉 f ll (α) lim 

α→ 0
f ll = 1 (27) 

K gg = 
ρg 

µg 

K 

η
〈 v g 〉 f gg (α) lim 

α→ 1
f gg = 1 (28) 

• To avoid solving an optimization problem in a functional space

because of the dependence of the properties on the void frac- 

tion (a very difficult or impossible task as discussed above),

the forms of viscous terms in the real flow are supposed to be

similar to their analytical expressions in an annular two-phase

viscous flow through a straight vertical capillary tube, derived

from the resolution of the Stokes boundary value problem, as

represented in Fig. 2 :

K ll ≈ K(1 − α) 3 (29) 

K lg ≈
µg 

µl 

(1 − α) 2 

α
(30) 

K gg ≈ Kα2 (31) 

K gl ≈
α

1 − α
(32) 

Fig. 2. Annular upwards two-phase viscous flow in a capillary tube.

A theoretical justification of these expressions is provided for 

instance by Horgue (2012) and Clavier et al. (2015) . It should be 

noted that they verify the theoretical relation between viscous 

terms ( Eq. (6) ): 

µg K gl K ll = µl K gg K lg = Kµg α(1 − α) 2 (33) 

4.2. Identification for zero liquid net flow rate 

We will first use remark 1 of paragraph 4.1 and consider the 

simplified macroscopic equations corresponding to 〈 v l 〉 = 0 . in that

case, macroscopic equations can be re-organized as follows: 

K lg − F lg 
K ll 

= 

∂ 〈 p l 〉 
l 

∂z
+ ρl g 

µl 〈 v g 〉
(34) 

1 + F gg 
K gg 

= −

∂ 〈 p g 〉 
g 

∂z
+ ρg g 

µg 〈 v g 〉
(35) 

Several unknown terms still appear in these equations. But for 

small gas velocities, inertial effects are negligible, which means 

that F lg and F gg should vanish, and K gg can be identified directly 

from measurements at zero liquid velocity and small gas velocity. 

However, an assumption is necessary on either K ll or K lg , since they 

both are important, even in the viscous regime. In this work, K ll is 

assumed to be of the form: 

K ll = K ( 1 − α) 
3 (36) 

This is a strong assumption, but it should be reminded 

that it corresponds to a relative permeability of a Corey-type 

equal to (1 − α) 3 , which is used by all the existing models in 

Tables 1 and 2 and in many other applications ( Honarpour et al., 

1986 ). Moreover, this expression is consistent with the limit con- 

dition (25) and with the approximated expression (29) . 

Therefore, the K lg and K gg terms can be identified from exper- 

imental data for zero net liquid velocity and small gas velocities. 

The F lg and F gg terms can be identified afterwards, from zero liq- 

uid velocity and high gas velocities experiments. 



Fig. 3. Identification of cumulated liquid-gas cross terms K lg − F lg . Comparison of experimental data (symbols Ä) with Eq. (38) (red curves). The values of the coefficient 

k lg in Eq. (38) for each bed are reported in Table 4 . Note: experimental uncertainties are given for the CALIDE data only ( Chikhi et al., 2016 ), because no informations are

provided on that matter in Tutu et al. (1983) . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.2.1. Identification of K lg 
Considering Eqs. (34) and (36) , the cumulated influences of K lg 

and F lg can be directly identified from experiments: 

K lg − F lg = K(1 − α) 3 
∂ 〈 p l 〉 

l 

∂z
+ ρl g 

µl 〈 v g 〉
(37) 

Fig. 3 represents the experimental values for K lg − F lg ver- 

sus the void fraction α. They are obtained from experiments of 

Tutu et al. (1983) and Chikhi et al. (2016) on single-sized spher- 

ical particle beds. Each graph represents data for one size of 

particle (3.18 mm, 6.35 mm and 12.7 mm for experiments of 

Tutu et al. (1983) and 4 mm and 8 mm for experiments of 

Chikhi et al. (2016) ). It should be noted that the void fraction is 

correlated to the gas velocity in these experiments. Thus, small 

void fractions correspond to small gas velocities, and therefore 

to weak inertial effects. As explained in the beginning of para- 

graph 4.2 , this means that experimental points for small void frac- 

tions, in the graphs of Fig. 3 , correspond to K lg only. 

Then, once again to avoid optimization over a functional space, 

an expression close to Eq. (30) is assumed for K lg : 

K lg = k lg 
µg 

µl 

(1 − α) 2 

α
. (38) 

The parameter k lg is determined for each particle size and its 

values are reported in Table 4 . Fig. 3 shows that Eq. (38) , rep- 

resented by red curves, fits very well with experimental data for 



Table 4

Best-fitting values of coefficient k lg in Eq. (38) .

d (mm) K (m 2 ) k lg k lg / K

3.18 mm 8.89 ×10 −9 4 4.50 ×10 −8 

4 mm 1.21 ×10 −8 5 .5 4.56 ×10 −8 

6.35 mm 3.18 ×10 −8 15 4.72 ×10 −8 

8 mm 5.37 ×10 −8 23 4.28 ×10 −8 

12.7 mm 1.96 ×10 −7 70 3.57 ×10 −8 

small void fraction, for all particles except the 3.18 mm ones, but 

overestimates them for higher void fractions. This observation sup- 

ports the relevance of Eq. (38) to represent K lg , at least for particles 

larger than 3.18 mm, and suggests that the departure of experi- 

mental data from Eq. (38) could be due to inertial effects. There- 

fore, the F lg term might be identified from the difference between 

Eq. (38) and experimental data for high void fractions. 

The ratio between reported values for k lg and bed permeabili- 

ties is almost constant for all particle beds, as shown by the last 

column of Table 4 . This was a predictable result, considering the 

assumption for K ll and experimental observations ( Fig. 1 a and b). 

4.2.2. Identification of F lg 
For high gas velocities and zero water velocity, the pressure 

drop is calculated by reversing Eq. (21) : 

−
∂ 〈 p l 〉 

l

∂z 
− ρl g = −

µl 

K ll 

(

K lg − F lg 
)

〈 v g 〉 . (39) 

Experimental data in Fig. 1 a, for 3.18 mm and 4 mm parti- 

cles show that the pressure drop tends towards the liquid hydro- 

static pressure gradient ρ l g for high gas velocities, which means 

that Eq. (39) tends towards 0. The behavior of pressure drop in 

6.35 mm, 8 mm and 12.7 mm particles appears to be similar, al- 

though the investigated range of gas velocities is not large enough 

to confirm this. 

Therefore, F lg is determined so that: 

lim 
α→ 1

−
µl

K ll 

(

K lg − F lg 
)

〈 v g 〉 = 0 (40) 

Since the limit of K ll is 0 when α approaches 1, a necessary 

condition - although not sufficient - to verify Eq. (40) is: 

lim 
α→ 1

K lg − F lg = 0 . (41) 

Therefore, we choose to adopt: 

F lg = K lg f lg , (42) 

where f lg is an α-dependent function, which verifies: 

lim 
α→ 0

f lg = 0 lim 
α→ 1

f lg = 1 . 

Function f lg is identified for all particle beds in Fig. 4 . It appears 

that the following expression constitutes a good approximation: 

f lg = 
α3 

α3 + ( 1 − α) 
n , (43) 

where exponent n depends on the particle size. Its values are 

summarized in Table 5 . 

Fig. 4. Identification of the f lg term in Eq. (42) from experimental data.

Table 5

Exponent n in Eq. (43) for all

particle beds.

d (mm) n

3.18 9

4 7

6.35 3 .2

8 2 .5

12.70 2 .2

At this point, it is interesting to point out that since we are 

dealing here with a term due to inertia effects, there might be an 

hidden dependence upon the velocity, or velocities, in Eq. (43) . In- 

deed, such a dependence could be recovered by a substitution us- 

ing Eq. (20) . However, there is not enough independent data to val- 

idate any expression. This point certainly requires further analysis 

if additional information can be added. 

4.2.3. Identification of K gg 
As already explained, K gg is identified from low gas velocity and 

zero water velocity experiments: 

−

∂ 〈 p g 〉 
g 

∂z
+ ρg g 

µg 〈 v g 〉
= 
1 + F gg
K gg 

≈
1

K gg 
(low 〈 v g 〉 ) (44) 

Fig. 5 summarizes the evolution of Eq. (44) for all particle beds 

(symbols). Low gas velocity data fit well with the expression 1 / Kα4 

(red curves), at least for the smallest particles. This leads to the 

following Corey formula: 

K gg = Kα4 , (45) 

For the largest particles, significant differences remain between 

Eqs. (44) and (45) , even for low gas velocities, and Eq. (45) consti- 

tutes a limit behavior, when 〈 v g 〉 tends towards 0. But, considering

that the Reynolds number increases with the particle size if 〈 v g 〉 is

kept constant, inertial effects in the gas phase are likely to be more 

important for the largest particles, which could explain these dif- 

ferences. Thus, in the same way as for the liquid phase, the differ- 

ence between experimental data in Fig. 5 and Eq. (45) for high gas 

velocities is considered as an inertial effect, and is used to identify 

the F gg term. 



Fig. 5. Experimental identification of expression versus void fraction (symbols Ä) compared to expression for 1/ K gg (red curves). Note: experimental uncertainties are given

for the CALIDE data only, because there are no informations provided on that matter in Tutu et al. (1983) . (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

4.2.4. Identification of F gg 
Given the assumptions made in paragraph 4.1 , F gg can be writ- 

ten in the following Forchheimer-like form: 

F gg = 
ρg 

µg 

K 

η
〈 v g 〉 · f gg ( α) , (46) 

where 

lim 
α→ 1

f gg ( α) = 1 . (47) 

Function f gg is determined from the difference between 

Eqs. (44) and (45) : 

F gg = −

∂ 〈 p g 〉 
g 

∂z
+ ρg g 

µg 〈 v g 〉
Kα4 − 1 

⇒ f gg =
−

∂ 〈 p g 〉 
g 

∂z + ρg g 

µg 〈 v g 〉 
Kα4 − 1

ρg

µg

K 
η 〈 v g 〉

. (48) 

The evolution of function f gg versus void fraction is presented 

in Fig. 6 , for all particle beds. The limit condition ( Eq. (47) ) is ver- 

ified for all particle sizes. This behavior is not a priori guaranteed 

by Eq. (48) , and deserves to be emphasized, since it supports the 

relevance of the form chosen for F gg , and particularly the factor 
ρg 

µg 

K 

η
〈 v g 〉 in Eq. (46) .

Function f gg depends on void fraction and particle size. How- 

ever, its behavior can not be reproduced by a simple function of 

α and d , and only the limit behavior of f gg is implemented in the 



Fig. 6. Identification of the f gg term in equation from experimental data.

final model: 

f gg = 1 . (49) 

Therefore, the expression for F gg is: 

F gg = 
ρg 

µg 

K 

η
〈 v g 〉 (50) 

This approximation is appropriate for 3.18 mm and 4 mm par- 

ticles, but the model could be improved for 6.35 mm, 8 mm and 

12 mm particle. However, it should be noted that the differences 

between Eq. (49) and experimental values for f gg could be due to 

inaccuracies in the modeling of K gg , since the model for K gg also 

presents significant differences with experimental data for those 

particles. Furthermore, it is assumed for the identification of f gg 
that F gg depends linearly on 〈 v g 〉 , which could be untrue in cer- 

tain domains, in the same way that the quadratic dependence of 

inertial effects to the filtration velocity in single-phase flows is not 

valid in all flow regimes as discussed before ( Clavier, 2015; Fir- 

daouss et al., 1997; Lasseux et al., 2011; Mei and Auriault, 1991; 

Wodié and Levy, 1991; Yazdchi and Luding, 2012 ). For these rea- 

sons, and in order to prevent the introduction of errors in the 

model, we recommend anyway the use of Eq. (49) , but this point 

should be further investigated. 

In that perspective, a numerical resolution on small repre- 

sentative domains of the pore-scale closure problems given by 

Lasseux et al. (2008) could help understanding the respective be- 

haviors of K gg and F gg ; a detailed analysis which can not be done 

experimentally. A similar study on single-phase flows has been re- 

cently conducted by Lasseux et al. (2011) , however, the two-phase 

flow case is much more challenging. 

4.3. Non-zero liquid net flow rate 

Assuming that expressions for K ll , K lg , F lg , K gg and F gg estab- 

lished for zero liquid velocity can be applied to non-zero liquid 

velocities, experimental data for non-zero liquid velocities allow 

identification of the remaining unknown terms F ll , K gl and F gl . This 

assumption is verified for viscous terms, which do not depend on 

velocities, but can be subjected to discussion for inertial terms. 

The data used in this paragraph have been obtained by the 

CALIDE facility ( Chikhi et al., 2016 ). These original data are the only 

one to propose values for a non-zero liquid net flow-rate. 

Fig. 7. Observation of inertial effects in the liquid phase F ll from pressure drop and

void fraction measurements of Chikhi et al. (2016) .

4.3.1. Identification of F ll 
F ll is the only remaining unknown term in Eq. (4) . It can be 

identified experimentally by: 

( F ll + 1 ) 〈 v l 〉 = −
K ll
µl 

(

∂P l 
∂z 

+ ρl g + 
(

K lg − F lg 
)

〈 v g 〉 . (51) 

This expression is evaluated from experiments and from inden- 

tified expressions for K ll , K lg and F lg . The results are presented in 

Fig. 7 a for 4 mm beads and in Fig. 7 b for 8 mm beads. In these 

figures, each series corresponds to the same value for Re l , while 

the void fraction, reflecting the influence of Re g , is reported in the 

x-axis. The results may be separated in two groups, depending on 

Re l . 

For Re l < 20, on both Fig. 7 a and b, the results are very close 

to 0. This agrees with theoretical predictions, since inertial effects 

in the liquid phase should be negligible when Re l is small. How- 

ever, this leads to very high relative uncertainties on these re- 

sults ( > 100 %), since experimental noise becomes, in proportions, 

very important. This noise even leads to negative values for expres- 

sion (51) in Fig. 7 b, which is not physical. Hence the data obtained 

for Re l < 20 should not be used to identify F ll , although this term 

could be non-zero in that domain (inertial effects are known to be 

potentially significant even for Re < 20 in single-phase flows). 

For Re l > 20, however, values of expression (51) are higher, 

which indicates significant inertial effects in the liquid phase. 

These data are therefore used to identify F ll . 



Fig. 8. Identification of F ll / 〈 v l 〉 . 

According to Eq. (27) , F ll should be proportional to a function 

f ll ( α), whose limit when α tends to 0 is equal to 1. Fig. 7 a and b 

show that the dependence of F ll on α is weak, at least within the 

investigated range of void fractions (between 0 and 40 %), which 

leads us to propose that function f ll should be constant. Then, the 

constraint on the limit value for f ll when α tends to 0 leads to: 

f ll = 1 . (52) 

Therefore: 

F ll = 
ρl 

µl 

K 

η
〈 v l 〉 , (53) 

or, equivalently:

F ll 
〈 v l 〉 

=
ρl 

µl 

K 

η
. (54) 

Fig. 8 a and b show that this behavior matches the experimen- 

tal observations for high liquid Reynolds numbers, and for both 

4 mm beads and 8 mm beads. Eq. (53) is therefore relevant for 

high liquid flow-rate, which constitute the general framework of 

this article, but further studies should be conducted to improve 

the description of the F ll term for intermediate liquid flows. It is 

interesting to note here that similar conclusions have been done 

for inertial effects in the gas phase ( F gg term). This shows that the 

initial assumptions for F ll and F gg , introduced in order to match the 

behavior of single-phase flows when α tends to 0 or 1, are not en- 

tirely verified for all regimes, and that a complete description of 

pressure drops in two-phase flows requires more complex expres- 

sions. 

4.3.2. Identification of K gl 
Since expressions for K ll , K gg and K lg have been obtained, the 

remaining viscous term K gl can be determined from the theoretical 

relation of Lasseux et al. (1996) ( Eq. (6) ): 

µg K gl K ll = µl K gg K lg (55) 

⇔ K gl = 
µl 

µg 

K gg K lg 
K ll 

= k lg 
α3 

( 1 − α) 
. (56) 

The validation of this expression requires experimental values 

for K gl . By reversing Eq. (5) , the cumulated influence K gl and F gl is 

identified: 

K gl − F gl = 
1

〈 v l 〉

K gg 
µg 

(

∂P g 
∂z 

+ ρg g + ( F gg + 1 ) 〈 v g 〉

]

. (57) 

Again, inertial effects are assumed to be negligible when ve- 

locity is small, i.e. F gl ≪ K gl when α → 0. Hence, the experimental 

values of expression (57) obtained for the small α are attributed to 

the viscous term K gl only. When α or Re g increases, on the oppo- 

site, inertial effects tend to become dominant. As a consequence, 

expression (57) should present the following behavior: it should 

increase from zero when α is very small, then reach a maximum 

when F gl becomes as large as K gl and finally decrease far below 

zero as F gl becomes increasingly important. 

Fig. 9 a and b show the experimental values of expression 57 , for 

4 mm beads and 8 mm beads. Each series corresponds to the same 

liquid Reynolds number. For the same reasons as in the determi- 

nation of F ll , only the data corresponding to Re l > 50 are used. 

Fig. 10 a and b present an enlargement of these figures on the small 

values of α, where the viscous term K gl should prevail. The ob- 

served behavior of expression (57) matches our expectations from 

previous paragraph, at least for 8 mm particles ( Figs. 9 b and 10 b). 

In the case of 4 mm particles ( Figs. 9 a and 10 a), conclusion is un- 

clear at small α, because experimental uncertainties are very large, 
but the increase of F gl at high α is very clear. 

Comparison between Eq. (56) and experimental values at small 

α reveals that this correlation fails to predict the results in that 

domain, at least for 8 mm particles ( Fig. 10 b). In the case of 4 mm 

particles ( Fig. 10 a), it might constitute a suitable approximation, 

but experimental uncertainties prevent any futher conclusion. The 

reason of this difference could be related to the validity of our hy- 

pothesis on inertial effects at small gas Reynolds number: it should 

be noted that the experimental data used have been acquired at 

high liquid Reynolds numbers, which could create significant in- 

ertial effects even at small gas Reynolds number. An other reason 

could lie on the postulated expressions for the other viscous terms. 

This question can not be solved with available data, and clearly 

appeals for further research. For now, we chose to adopt correla- 

tion (56) , despite its obvious limitations, for two reasons: 

• Since the exact origin of the gap between experiment and

Eq. (56) , established theoretically, can not be determined, we

prefer not to introduce more artificial parameters in the model.



Fig. 9. Identification of K gl − F gl . 

• As it will be shown in the next paragraph, the magnitude of F gl
at high Re g is very large compared to the one of K gl . Therefore,

the imperfections on the correlation for K gl has a small influ- 

ence on the determination of F gl .

4.3.3. Identification of F gl 
The inertial coupling term F gl is identified as the difference be- 

tween Eqs. (57) and (56) for high gas velocities, which is presented 

in Fig. 11 a and b. Each series corresponds to the same liquid ve- 

locity. It is worth noticing that the liquid velocity has very small 

effects, which supports the relevance of using the expressions for 

K ll , K lg , F lg , K gg and F gg in non-zero water velocity situations, which 

is a major assumption made at the beginning of Section 4.3 . 

Quantitatively, experimental values of F gl present a good agree- 

ment with the following correlation: 

F gl = f gl α
6 , (58) 

where f gl is a constant, which is equal to 3500 for 4 mm beads, 

and is equal to 70 0 0 for 8 mm beads. This suggests a linear rela- 

tion between F gl and K / η, but further experimental data, for other 

Fig. 10. Enlargement of Fig. 9 a and b where viscous effects ( K gl ) are dominant.

particle sizes or shapes are needed in order to comfort this con- 

clusion. 

4.4. Synthesis 

The method presented in this part, and synthesized in Fig. 12 , 

allowed to identify expressions for unknown terms in averaged 

momentum equations for inertial two-phase flows through porous 

media. The model is based on experimental data obtained: 

• with beds made of single size spheres (3mm–12mm),
• for liquid Reynolds numbers ranging from 0 to 300,
• for gas Reynolds numbers ranging from 0 to 500.

The resulting model can be summarized as follows: 

• Momentum equation for the liquid phase:

〈 v l 〉 = −
K ll
µl 

(

∂ 〈 p l 〉 
l

∂z 
+ ρl g − F ll 〈 v l 〉 + K lg 〈 v g 〉 − F lg 〈 v g 〉 (59)

where: 

K ll = K ( 1 − α) 
3 K lg = k lg 

µg 

µl 

( 1 − α) 
2 

α

F ll = 
ρl 

µl 

K 

η
〈 v l 〉 F lg = K lg 

α3 

α3 + ( 1 − α) 
n 



Fig. 11. Identification of F gl .

• Momentum equation for the gas phase:

〈 v g 〉 = −
K gg
µg 

(

∂ 〈 p g 〉 
g

∂z 
+ ρg g − F gg 〈 v g 〉 + K gl 〈 v l 〉 − F gl 〈 v l 〉 (60)

where: 

K gg = Kα4 K gl = 
µl 

µg 

K gg K lg 
K ll 

F gg = 
ρg 

µg 

K 

η
〈 v g 〉 F gl = f lg α

6 

• Identity between liquid and gas pression gradients (no capillary

pressure effect):

∂ 〈 p l 〉 
l

∂z 
= 

∂ 〈 p g 〉 
g

∂z 
(61) 

• Permeability and passability (Ergun correlations):

K = 
d 2 ε 3 

181 ( 1 − ε ) 2 
η = 

dε 3 

1 . 63 ( 1 − ε ) 

Equivalences can be found between the viscous and iner- 

tial dissipation terms and the concepts of relative permeabilities 

and passabilities of the generalized Ergun models presented in 

Section 2 : 

K l = K ll /K = (1 − α) 3 (62) 

ηl = 
ρl 

µl 

K ll 
F ll 

〈 v l 〉 

η
= (1 − α) 3 (63) 

K g = K gg /K = α4 (64) 

ηg = 
ρg 

µg 

K gg 
F gg 

〈 v g 〉 

η
= α4 (65) 

However, as already pointed out in the introduction, the cou- 

pling terms are not consistent with the interfacial friction term 

proposed in generalized Ergun models, and constitute an original 

Fig. 12. Schematic representation of the procedure for the identification of the unknown terms in the macroscopic equations.



Fig. 13. Schematic representation of the iterative process used to determine the prediction of pressure drop and void fraction by the models.

approach in the modeling of gas-liquid friction in this kind of me- 

dia. Formal dependences of these terms on the granulometry of 

the particles are proposed. Thus, the coefficient k lg is proportional 

to K , as shown in Table 4 , and exponent n in expression of F lg also 

depend on the bed permeability, as shown in Table 5 . These rec- 

ommendations match the observations for 5 sizes of spherical par- 

ticles, whose diameters range from 3.18 mm to 12.7 mm. The co- 

efficient f gl is proportional to K / η, which match the observations of 
non-zero net liquid rate flows through 4 mm and 8 mm particle 

beds. However, more experimental data concerning other sizes or 

shapes of particles are needed in order to support this recommen- 

dation. 

5. Validation of the model

In this Section, a two-step validation of the new model is pre- 

sented. First, the ability of the new model to predict pressure drop 

and void fraction is assessed, by comparison with experimental 

data presented in Section 3 . Then, the new model is compared to 

previous models based on a generalization of Ergun law possibly 

including an explicit term for the interfacial drag. 

5.1. Prediction of pressure drop and void fraction 

All existing models, including the one proposed in this work, 

involve two averaged momentum equations, and a capillary- 

pressure relation. This can be formalized by: 

∂ 〈 p l 〉 
l

∂z 
= f l ( α, Re l , Re g ) (66) 

∂ 〈 p g 〉 
g

∂z 
= f g ( α, Re l , Re g ) (67) 

〈 p l 〉 
l 
− 〈 p g 〉 

g 
= f cap ( α) ⇒ 

∂ 〈 p l 〉 
l

∂z 
= 

∂ 〈 p g 〉 
g

∂z 
(68) 

where f l and f g are characteristic functions of the model, and f cap 
represents the dependence of the capillary pressure on the void 

fraction. 

When liquid and gas Reynolds numbers are imposed, these 

equations constitute a 3-equations and 3-degrees-of-freedom sys- 

tem (liquid and gas pressure drops and void fraction). By use of an 

iterative process, it is therefore possible to determine at least one 

set ( 〈 p l 〉 
l , 〈 p g 〉 g , α) solution of the system, and verifying the phys- 

ical condition 0 < α < 1. The iterative process used in this work 

(see Fig. 13 ) is based on the “Goal Seek” function of the MS-Excel ®

Software. It determines simultaneously, for given liquid and gas 

Reynolds numbers, the liquid and gas pressure drops and the void 

fraction so that the capillary pressure relation is verified (identity 

between liquid and gas pressure drops). 

This methodology is the only way to determine the pressure 

drop and/or the void fraction from the gas and liquid Reynolds 

numbers only, which are the only input parameters of the model 

in most applications. The major consequence of this is that predic- 

tions of pressure drops and void fractions are linked by the model 

and have a mutual influence on each other. Hence, the validation 

of a model requires accurate predictions of both pressure drop and 

void fraction. 

5.2. Comparison between the model predictions and experimental 

data 

By use of the iterative process schematized on Fig. 13 , pres- 

sure drop and void fraction predicted by the new model are de- 

termined, and compared to experimental data in Fig. 14 for 4 mm 

particles and in Fig. 15 for 8 mm particles. 

The prediction by the new model is very accurate in the case of 

4 mm particles, as shown by Fig. 14 . The dependence of the void 

fraction to the gas Reynolds number is well reproduced, and its 

relative independence with the liquid Reynolds number is restored. 

The behavior of pressure drop is predicted with high precision, for 

small - or null - as well as for high liquid rate flows. 

When both liquid and gas Reynolds numbers are high, pressure 

drop tends to be slightly overestimated by the model. This is due 

to a very slight overestimation of the void fraction in this domain. 

Indeed, Fig. 16 shows that when the measured value of the void 

fraction is used in the model, instead of the predicted one, the in- 

flexion of the pressure drop for high liquid and gas flow-rates is 

correctly restored. This is suggesting the following remarks. Firstly, 

this illustrates the mutual influence of the predictions of pressure 

drop and void fraction, as discussed in paragraph 5.1 . Secondly, this 

indicates that the sensitivity of the pressure drop to the void frac- 

tion is very high: a very slight overestimation of the void fraction 

led to a significant deviation of the pressure drop from experimen- 

tal data. A very accurate prediction of the void fraction is therefore 

required (a remark already introduced before in this paper). 

In the case of 8 mm particles, the void fraction is correctly 

predicted for high flow-rates, but is underestimated for interme- 

diate Reynolds numbers ( Fig. 15 a). Because of the model sensi- 

tivity to this parameter, this leads to significant underestimations 

of the pressure drop in that domain ( Fig. 15 a), although the gen- 

eral behavior of pressure drops is well reproduced. These devi- 

ations are mainly due to the approximations made in the mod- 

elling of the gas phase terms, and in particular to the one for F gg 
in Section 4.2.4 , which is not satisfactory for 8 mm particles. This 

point should be improved in future works. 

5.3. Comparison with existing models 

The new model will now be compared to the existing ones, 

presented in Section 2 and Tables 1 and 2 . These models are 

based on a generalization of Ergun’s law, and can be formalized 

by Eqs. (1) and (2) . 



Fig. 14. Direct comparison between predictions of pressure drops and void fraction

by the new model and experimental data of Chikhi et al. (2016) , for 4 mm beads.

5.3.1. Zero net liquid flowrate 

The predictions of normalized liquid pressure drops and void 

fractions by all generalized Ergun models are compared in Figs. 17 a 

and 17 b to those of the new model for zero liquid Reynolds num- 

ber and 4 mm beads. 

The models of Lipinski, Reed and Hu&Theofanous, which do not 

consider any gas-liquid friction, predict a zero pressure drop and 

therefore a normalized pressure drop equal to 1, which is inconsis- 

tent with the experiments. However, since they involve different 

expressions for the gas phase relative passabilities, their predic- 

tions for the void fraction are not identical, as shown in Fig. 17 b: 

the model of Lipinski underestimates the void fraction, while the 

model of Reed is accurate for high gas Reynolds numbers only, and 

the model of Hu&Theofanous underestimates the void fraction for 

low gas Reynolds numbers and overestimates it for high Re g . 

The model of Schulenberg allows a very accurate prediction of 

the pressure drop, especially for low gas Reynolds numbers. How- 

ever, the void fraction is overestimated by this model, which is 

a problem given the reciprocal influences of these parameters on 

each other. 

The model of Tung&Dhir is able to reproduce quite well the re- 

duction of the pressure drop for low gas Reynolds numbers, but 

presents very large deviations from experimental data byond Re g 
≈ 100. This is due to inacuracies in the modelling of annular flows 

by Tung and Dhir (1988) . Schmidt (2007) attempted to improve the 

Fig. 15. Direct comparison between predictions of pressure drops and void fraction

by the new model and experimental data of Chikhi et al. (2016) , for 8 mm beads.

Fig. 16. Influence of void fraction on the prediction of pressure drops, for 4 mm

beads.



Fig. 17. Comparison of the new model with previously existing ones, for 4 mm

beads, Re l = 0 . 

model by modifying the flow map so that the annular regime is 

not met. However, the modified model remains less efficient than 

Schulenberg’s in that situation. Furthermore, the void fraction is 

overestimated. 

The new model is the only one to reproduce both pressure drop 

and void fraction, and within the whole range of gas Reynolds 

number. It takes advantage of the void fraction measurement in 

the CALIDE experiment. And, as pointed out above, the pressure 

drop is very sensitive to the void fraction. 

5.3.2. High liquid flow-rate 

As an illustration of the performances of the models for high- 

liquid flow-rates, Fig. 18 compares the models to experimental data 

for 4 mm beads and Re l = 109 . 

The model of Lipinski largely underestimates both pressure 

drop and void fraction. The models of Hu&Theofanous predicts ac- 

curately the void fraction, but largely overestimates the pressure 

drop. The model of Reed allows a better prediction of the pressure 

drop, at least for moderate gas Reynolds numbers, but underesti- 

mates the void fraction. 

The model of Schulenberg does not predict well the pressure 

drop and the void fraction at the same time: only pressure drop is 

well predicted for low Re g , while only void fraction is reproduced 

for high Re g . 

The model of Tung&Dhir very accurately predicts the void frac- 

tion, and slightly overestimate the pressure drop. It is the best one 

Fig. 18. Comparison of the new model with previously existing ones, for 4 mm

beads, Re l = 109 . 

among the “generalized Ergun” models under these hydrodynamic 

conditions. 

The new model allows the best prediction of the void fraction 

for low Re g , and is very close - although not the best one - for high 

Re g . Pressure drop is predicted well, except for the highest Re g . As 

already pointed out in paragraph 5.2 , the prediction of the pressure 

drop in that domain could be improved if the void fraction was 

better reproduced, which could be achieved by a better modelling 

of inertial effects in the gas phase. 

In summary, the new model allows good predictions of pres- 

sure drop and void fractions within the whole range of investi- 

gated velocities. It represents a significant improvement over the 

usual generalized Ergun models. 

6. Conclusions

Motivated by the reduction of uncertainties in nuclear debris 

bed coolability assessment, the CALIDE research program has been 

launched at IRSN (France) in order to better understand, model 

and predict the pressure drops and the void fractions in inertial 

two-phase flows in porous media. In the scope of this program, 

and in order to fill the lack of information in the literature on 

that subject, an original experimental database containing mea- 

surements of pressure drops, average velocities and void fractions 

has been created. These data have emphasized some lack of pre- 

dictability of the current models, which are based on a generaliza- 



tion of the Darcy–Forchheimer law to multi-phase flows. In this ar- 

ticle, the ability of new equations to reproduce these data has been 

assessed. These equations have been obtained after recent develop- 

ments in theoretical averaging of two-phase momentum equations 

in porous media. The model involves eight effective parameters, 

representing the drag forces due to viscous and inertia effects at 

the various interfaces. In particular, cross-terms associated to the 

friction between the phases are shown to play a very important 

role. 

An original method has been proposed to identify analytical ex- 

pressions for the eight unknown terms in the new averaged equa- 

tions. This method is not trivial, and strong hypothesis have to be 

made in order to separate the different physical effects. The con- 

sequences of these hypothesis on the physical meaning of the final 

model have been discussed. As a result, a new analytical model has 

been proposed to predict the pressure drop and the void fraction 

in inertial two-phase flows in porous media. The resulting model 

can be summarized as follows: 

• Momentum equation for the liquid phase:

〈 v l 〉 = −
K ll
µl 

(

∂ 〈 p l 〉 
l

∂z 
+ ρl g − F ll 〈 v l 〉 + K lg 〈 v g 〉 − F lg 〈 v g 〉 (69)

where: 

K ll = K ( 1 − α) 
3 K lg = k lg 

µg 

µl 

( 1 − α) 
2 

α

F ll = 
ρl 

µl 

K 

η
〈 v l 〉 F lg = K lg 

α3 

α3 + ( 1 − α) 
n 

• Momentum equation for the gas phase:

〈 v g 〉 = −
K gg
µg 

(

∂ 〈 p g 〉 
g

∂z 
+ ρg g − F gg 〈 v g 〉 + K gl 〈 v l 〉 − F gl 〈 v l 〉 (70)

where: 

K gg = Kα4 K gl = 
µl 

µg 

K gg K lg 
K ll 

F gg = 
ρg 

µg 

K 

η
〈 v g 〉 F gl = f lg α

6 

• Identity between liquid and gas pression gradients:

∂ 〈 p l 〉 
l

∂z 
= 

∂ 〈 p g 〉 
g

∂z 
(71) 

• Permeability and passability (Ergun correlations):

K = 
d 2 ε 3 

181 ( 1 − ε ) 2 
η = 

dε 3 

1 . 63 ( 1 − ε ) 

The comparison of the predictions of this model with experi- 

mental data demonstrated its predictability, within the whole in- 

vestigated range of liquid and gas Reynolds numbers, which covers 

0 to 300 for the liquid phase, and 0 to 500 for the gas phase. Al- 

though some improvements are still needed, in particular for the 

modeling of inertia effects in the gas phase, the comparison with 

existing models showed that the new model represents a signifi- 

cant improvement in the description of high velocity multi-phase 

flows in particle beds. 

Further improvements can be achieved in several directions. 

First, it must be remembered, as emphasized in the paper, that 

several assumptions were made in the theoretical development: 

decoupling between closure problems for momentum and heat 

transfer, quasi-steady closure problems, to name the most impor- 

tant. Second, the identification of the several functions of void frac- 

tion and (potentially) velocities was achieved by assuming forms of 

these functions, thus allowing for an optimization procedure car- 

ried on only a few scalar parameters. As a consequence, one may 

miss some physical correlations, in particular with velocities since 

the gas velocity is loosely correlated to the void fraction in our ex- 

periments. A better identification procedure is a challenging math- 

ematical task that could be improved by: 

• a better understanding of the functional dependence of the

effective parameters, possibly by numerical solutions of the

closure problem over realistic pore structures (a very difficult

task!),
• more accurate experimental data, for instance following the

transient establishment of the steady-state situation.
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