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h  i  g  h  l  i  g  h t  s

• Single­phase  pressure  drops  versus  flow  rates  in  particle  beds are  measured.
• Conditions  are  representative of  the  reflooding  of  a nuclear  fuel  debris  bed.
• Darcy,  weak  inertial,  strong  inertial  and  weak  turbulent  regimes  are  observed.
• A  Darcy–Forchheimer  law  is  found to be  a  good  approximation  in this  domain.
• A  predictive  correlation  is  derived  from  new experimental  data.

a  b  s  t  r  a  c t

During  a severe  nuclear  power  plant  accident,  the  degradation  of  the  reactor  core  can lead  to  the  formation
of  debris  beds.  The  main  accident  management  procedure  consists  in injecting  water  inside  the  reactor
vessel.  Nevertheless,  large uncertainties  remain  regarding  the  coolability  of  such  debris  beds.  Motivated
by  the  reduction  of  these  uncertainties,  experiments  have  been  conducted  on the  CALIDE  facility  in  order
to  investigate  single­phase  pressure  losses  in  representative  debris  beds.  In  this  paper,  these  results
are  presented  and analyzed  in order  to  identify  a simple single­phase  flow  pressure  loss  correlation  for
debris­bed­like  particle  beds  in  reflooding  conditions,  which  cover  Darcean  to Weakly  Turbulent flow
regimes.

The first  part  of  this work  is dedicated  to  study  macro­scale  pressure  losses  generated  by  debris­bed­
like  particle beds,  i.e., high sphericity  (>80%)  particle  beds  with  relatively  small  size  dispersion  (from
1 mm  to  10  mm). A Darcy–Forchheimer  law,  involving  the  sum  of  a  linear  term  and  a  quadratic  deviation,
with  respect to filtration  velocity, has been  found  to be  relevant  to describe  this  behavior  in Darcy,  Strong
Inertial  and Weak  Turbulent  regimes.  It  has  also been  observed  that,  in  a  restricted  domain  (Re  = 15 to
Re  =  30)  between  Darcy  and  Weak Inertial  regimes,  deviation  is  better described  by  a cubic  term, which
corresponds  to the  so­called  Weak Inertial regime.

The second  part  of  this  work  aims at identifying  expressions  for  coefficients  of  linear  and quadratic
terms  in Darcy–Forchheimer  law,  in  order to obtain  a predictive  correlation.  In  the  case  of  monodis­
perse  beds, and  according  to the  Ergun  equation,  they depend  on the  porosity  of  the  medium,  empirical
constants  and  the  diameter  of  the  particles.  Applicability  of  the  Ergun  equation  for  debris­bed­like  particle
beds  has  been investigated  by  assessing  the  possibility  to evaluate  equivalent  diameters,  i.e., character­
istic  length  allowing  correct  predictions  of  linear  and quadratic  terms  by the  Ergun  equation.  It  has  been
observed  that  the  Sauter  diameter  of  particles  allows  a very  precise prediction  of  the  linear  term,  by
less  than 10% in  most  cases,  while  the  quadratic  term can be predicted using  the  product  of the  Sauter
diameter  and  a sphericity  coefficient  as  an equivalent  diameter,  by  about  15%.
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Nomenclature

Latin letters

D  bed diameter 93.96 ± 0.04 mm (mm)
d spherical particle diameter (m)

d〈n〉 number mean diameter

∑

i
dini∑

i
ni

(m)

d〈l〉 length mean diameter

∑

i
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i
ni∑

i
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d〈s〉 surface mean diameter
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i
ni∑

i
nid
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d〈v〉 volume mean diameter

∑

i
d4
i
ni∑

i
nid
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i

(m)

dSt Sauter diameter
6Vpart
Spart

(m)

dS surface equivalent diameter
(
Spart
�

)1/2

(m)

dV volume equivalent diameter
(

6Vpart
�

)1/3

(m)

di diameter of  i­th sort  of  particle in a multi­sized
spherical particle bed (m)

H  Bed height 499.0 ± 1.6 mm (mm)
hK Ergun constant for permeability (–)
h� Ergun constant for passability (–)
K permeability (m2)
mw mass of  water necessary to fill  the bed up  (kg)
ni number of particle of i­th sort  in a multi­sized spher­

ical particle bed (–)
P pressure (Pa)
Q  volumetric flow (m3/s)

Rep Reynolds number in porous medium �UdSt
�(1−ε)

(–)

Spart total surface of particles of  a  bed (m2)
spart surface of a single particle of a  bed  (m2)
si surface of i­th sort of  particle in a multi­sized spher­

ical particle bed (m2)
Vpart total volume of  particles of a  bed  (m3)
vpart volume of a  single particle of a bed (m3)
vi volume of i­th sort  of particle in  a multi­sized spher­

ical particle bed (m3)
U filtration velocity Q

�D2/4
(m/s)

Greek letters

ε  porosity (–)
� passability (m)
� fluid dynamic viscosity (Pa s)
� fluid density (kg/m3)
�w water density (kg/m3)

  sphericity
�1/3(6Vpart )

2/3

Spart
(–)

1. Introduction

In the course of  a  severe nuclear accident, the heat up of the
core after complete or partial dry­out can lead to a  collapse of  fuel
assemblies and to the formation of  a  debris bed, which is much
more difficult to  cool down than the intact fuel assemblies. This
phenomenon has been observed in the TMI­2 highly damaged core
in 1979 (Broughton et al.,  1989), and reproduced in many experi­
mental programs: LOFT (Hobbins and McPherson, 1990), PHEBUS
(Repetto, 1990), PBF (Petti et al.,  1989). Removal of the decay heat
from the debris bed  by  reflooding is essential for the mitigation of
the accident. However, the success of  this operation can be com­
promized by many factors, such as decay heat power, exothermal
oxidation of Zirconium by steam, or a too  weak permeability of the

Fig. 1. Schematic view of flow structure in debris beds during reflooding.

bed, and cannot be  predicted on the basis of current knowledge
and understanding. This implies to study how water penetrates
this degraded geometry, which can be  described as a hot porous
medium.

Many analytical experimental programs have been, and still are
dedicated to that question. Tutu et  al. (1984) and Ginsberg et  al.
(1986) performed the first small scale experiments (18 kg of debris)
on reflooding of single­size spherical particle beds, i.e., monodis­
perse beds. Experiments of  Wang and Dhir (1988), and, later, the
SILFIDE program by  EdF  (Atkhen and Berthoud, 2006), allowed to
reach larger scales (70 kg  of  debris) and to simulate residual power
by  an induction heating. During the late­2000s, more representa­
tive conditions were investigated during experiments of  DEBRIS
(Rashid et  al., 2008), POMECO (Li and Ma, 2011a,b) and PRELUDE
(Repetto et al., 2011) programs, where higher temperatures, up to
1000 ◦C, were investigated, as well as  multi­dimensional effects, for
example by use  of a lateral by­pass to simulate the effect of  non­
degraded assemblies in the outer parts of the core. Nowadays, the
PEARL program (Chikhi, 2014) aims at investigating the effect of
higher temperatures, larger scales and pressure.

In this framework, a new facility, CALIDE, has been built at IRSN
(Cadarache, France), in order to study pressure losses generated in
representative debris beds in reflooding conditions. The relevance
of this study lies in the fact that pressure losses constitute a  key
parameter governing water penetration in a  hot debris bed, and
that no consensus exists on correlations valid for beds packed with
coarse and/or multi­sized particles (Ozahi et al.,  2008; Li and Ma,
2011a,b; MacDonald et al., 1991). Establishment of  accurate corre­
lations for pressure losses in porous media are therefore necessary
for interpretation of  reflooding experiments and their numerical
simulation with severe accident codes. Both single and two­phase
flow correlations are needed, since both these configurations occur
in a  hot particle bed during reflooding (see Fig. 1): two­phase flows
occur near the quenching front, while single­phase flows, steam
or liquid water, occur in  upstream and downstream parts. In  this
work, experimental results obtained with single­phase flows in
the CALIDE facility will be analyzed in order to  derive a simple
macro­scale correlation for single­phase pressure losses validated
for porous media representative of nuclear debris beds, and for
flowing conditions representative of  a  reflooding.

A detailed description of  the CALIDE facility and of  the stud­
ied particle beds are provided in Section 2. The CALIDE facility is
designed to  reproduce the characteristic filtration velocities dur­
ing reflooding, which basically correspond to Reynolds numbers



            

ranging from Re =  15  to  Re =  100  in  liquid parts, and to Re ≈  1000 in
gas parts (Repetto et  al., 2011), Reynolds number being defined by:

Re =
dStU�

� (1 − ε)
, (1)

where � and � are the density and dynamic viscosity of the fluid,
respectively, ε is the  porosity of the medium, and U  and dSt are the
characteristic speed and dimension. U is  the filtration velocity, or
the Darcy velocity, defined as:

U =
Q

�D2/4
, (2)

where Q is the volumetric flow, and D the diameter of the test sec­
tion. The characteristic dimension dSt is the Sauter diameter of the
particles, defined by:

dSt =
6Vpart
Spart

,  (3)

where Vpart and Spart are the total volume and surface of the parti­
cles, respectively.

Many definitions exist for Reynolds number in  porous media.
The expression used in this work (Eq. (1)), and in  particular the
1/(1 − ε) factor, is obtained during the derivation of  the Ergun equa­
tion from the Kozeny model (du Plessis and Woudberg, 2008). It
has been used in similar situations (Ozahi et al.,  2008; Li and Ma,
2011a,b).

Experimental particle beds are chosen to be representative of
real debris beds, which basically consist in coarse convex parti­
cles of size ranging from a few hundred microns to  approximately
10 mm, with average porosity of  40% (Chikhi et  al., 2014).

Flowing conditions during reflooding are beyond the validity
domain of the Darcy’s law, which only holds in the creeping regime,
up to Reynolds number of  a  few units to a dozen, depending on
the medium (Chauveteau and Thirriot, 1967; Mei and Auriault,
1991; Lasseux et  al., 2011). In a  macroscopically isotropic medium
through witch a  one­dimensional upward flow occurs, Darcy’s law
can be expressed as:

−
∂P

∂z
+ �g =

�

K
U,  (4)

where P is the pressure, g  the gravity acceleration, and K  the
permeability of  the medium. When the fluid velocity increases,
deformation of the streamlines occur in  largest pores, followed
by local recirculations, due to  pore­scale inertial effects, then pro­
gressively in  smaller and smaller pores, as shown by  Chauveteau
and Thirriot (1967). Similarly, for Reynolds numbers of  a few
hundreds or thousands (Dybbs and Edwards, ulent; Latifi et  al.,
1989; Kuwahara et  al., 1998), pore­scale turbulence appears.
Macroscopically, it results in deviations to  Darcy’s law, or so­called
Forchheimer effects (Forchheimer, 1901), which are often repre­
sented by the following mathematical form:

−
∂P

∂z
+ �g =

�

K
U  + bUn. (5)

The value of  exponent n  depends on flow regime and pore­
scale geometrical structure. Its determination for CALIDE debris
beds is the purpose of Section 3. In structured distillation pack­
ings, for example, Soulaine and Quintard (2014) observed n =  3/2,
while a  quadratic deviation (n = 2) usually fits well with experimen­
tal data for Strong Inertial regime in disordered spherical particle
beds (Forchheimer, 1901; Ergun, 1952; MacDonald et  al.,  1979;
Li and Ma, 2011a,b), as  well as numerical simulations (Lasseux
et al., 2008, 2011). Furthermore, it can be mathematically derived
from Navier–Stokes equations, using homogenization method (Mei
and Auriault, 1991; Wodié and Levy, 1991; Firdaouss et  al., 1997),
that the first deviations to  Darcy’s law should fit with a  cubic

law (n =  3), which corresponds to the so­called “Weak Inertial”
regime. Although supported by numerical simulations (Lasseux
et al., 2011; Yazdchi and Luding, 2012), the occurrence of  Weak
Inertial regime in  disordered particle beds has never been exper­
imentally observed, to  our knowledge, because of the very low
magnitude of the cubic term, which is usually lost in  measurement
uncertainties. This explains why a  quadratic law is usually consid­
ered as  an  accurate description of  deviations to Darcy’s law  from
Darcy to Turbulent regimes in  this class of  media. Nevertheless,
and given the high precision of  the instrumentation of  the CALIDE
facility, the existence of  Weak Inertial regime is  worth investigat­
ing, especially considering the lack of experimental data concerning
that question in  the literature.

Quantitative prediction of pressure losses necessitates expres­
sions for coefficients of  linear and non­linear terms. In this work,
expressions for Darcy (linear) and Strong Inertial (quadratic) terms
will be determined. Most often, as  it will be  discussed later, cubic
deviations do not play a significant role, given their magnitude and
the  range of  Reynolds numbers encountered in  practice. For that
reason, no expression will be sought for coefficient of the cubic
term in Weak Inertial regime.

In  the case of  monodisperse beds, a  validated model for pressure
losses is the Ergun’s law (Ergun, 1952), widely used in chemical and
petroleum engineering (Nemec and Levec, 2005; Shaban and Khan,
1995):

−
∂P

∂z
+  �g =

�

K
U +

�

�
U2, (6)

where � is  the “passability” of  the medium, permeability and pass­
ability being calculated by:

K  =
ε3d2

hK (1  − ε)2
(7)

� =
ε3d

h� (1  − ε)
, (8)

where ε  is  the porosity of  the bed, d  the diameter of the particles
and hK and h� are the Ergun constants.

Eqs. (7)  and (8) are empirical correlations established for
monodisperse beds. In Section 4, their applicability to debris­bed­
like media will be  investigated, by  assessing the possibility to
define equivalent diameters, i.e., characteristic dimensions allow­
ing correct predictions of permeability and passability terms when
injected in  Eqs. (7) or (8). Although physically meaningless, this
kind of  approach has been found to be relevant, from an  empiri­
cal point of  view, for permeability prediction of  this class of  media
(Chikhi et  al., 2014). In this work, different equivalent diameters
will be sought for permeability (dK) and passability (d�), among
available values of  literature (Ozahi et al.,  2008; Li and Ma, 2011b).

2.  CALIDE

2.1. Experimental facility

The CALIDE facility, as illustrated in Fig. 2, is an air/water loop at
room temperature and pressure. Its instrumentation allows mea­
surement of  pressure losses versus flow­rates in  a 93.96 ± 0.04 mm
diameter cylindrical test section that contains a particle bed. Six
radial holes uniformly distributed along the section allow pressure
tapping at different levels inside, downstream and upstream the
debris bed. A stainless steel wire mesh is placed at the bottom of
the test section to support the bed. A  mark is  drawn on the test
section 499.0 ± 1.6 mm above the bottom wire mesh and is  used to
adjust the bed height.

Particles are chosen to be representative of  nuclear fuel debris,
in terms of  size and shape, and are presented in next paragraph.



Fig. 2.  Schematic representation of  the CALIDE facility.

Water and gas flow rates are determined so that  filtration velocity is
representative of water or steam filtration velocity during a  reflood­
ing of a debris bed. According to  the Probabilistic Safety Analysis
(Durin et al., 2013), reflooding of a  debris bed  is most likely to occur
at a primary pressure ranging from 1  to 10  bar. For this pressure
range, the amount of water that can be  provided by  the safety injec­
tion system in  a  French 1300 MWe PWR ranges between 1300 m3/h
and 200 m3/h,  which corresponds to filtration velocity of  between
32 mm/s and 5 mm/s (the diameter of the vessel is 3.76 m). Evalua­
tion of  flowing conditions in the gas  phase requires an assumption
on steam flowrate. In PRELUDE experiments (Repetto et  al., 2013),
steam productions up to 100 g/s have been observed for reflood­
ing velocities of 5  mm/s, which corresponds to a  steam filtration
velocity of 7.2 m/s.

Thus, instrumentation allows measurements of air  flows
(up to 1000  Nl/min ± 0.5  % ≡2.58 m/s at 20 ◦C, 1 atm), water
flows (up to  600 kg/h  ± 0.2 % ≡24 mm/s), pressure drops (up to
200 mbar± 0.04 %),  absolute pressure and fluid temperature. Range
and accuracy of each sensor used in CALIDE are listed in  Table 1. Air
flows, water flows and pressure drops are measured using respec­
tively three air flow­meters­regulating valves (small, medium and
large range), two water flow­meters commanding two regulated
pumps (small and large range) and two differential pressure sen­
sors (small and large range). Using several sensors for fluid flows
and pressure drops was found to be necessary in order to minimize
measurement uncertainties at both low and high flow rates.

A thermocouple and an  absolute pressure sensor measure the
temperature in the test section, which is considered as uniform,
and the absolute pressure at the bottom of the debris bed, in order
to determine the physical properties of  the fluid. Density and vis­
cosity of water are determined from tabulated values (Lide, 1990)
and temperature. The viscosity of the air  is  deduced from the tem­
perature, using the Sutherland law  (Lide, 1990), and its density is
determined from the perfect gas law:

� =
P  −  1P/2

rT
,  (9)

where P is the absolute pressure, 1P is  the pressure loss in the
debris bed, T the absolute temperature and r the specific gas  con­
stant, which is equal to 287 for air. Density is calculated for the
average pressure in the debris bed P − 1P/2 to  account for the gas
compressibility (report to Appendix for more details).

2.2. Particle beds

An exhaustive state­of­the­art on debris bed granulometry can
be found in Chikhi et  al. (2014). In this part, the main results of  that
study are summarized.

Fuel pellets naturally crack during normal operation (Olander,
1990). The size and shape of debris were investigated by  exper­
imental programs, like LOFT (Hobbins and McPherson, 1990),
PHEBUS (Repetto, 1990) or PBF (Petti et  al., 1989) and examina­
tion of  the debris bed formed in the TMI­2 damaged core (Akers
et al., 1986). From the cracking model of  Oguma (Oguma, 1983)
and literature review, Coindreau et  al. (2013) estimated that the
shape of  the fuel fragments should be similar to prisms and that
their sizes should range from 2.4 mm to  3.2 mm as long as the fuel
burn­up remains under 40  GWd/tU, and that very  thin particles are
not produced or  do not remain into the bed (up to  30 mm particles
could appear beyond this value, by the fragmentation of the high
burn­up structures).

The size of  fuel fragments in TMI­2 core ranges from 0.3 mm to
4  mm, and its average value is  of  the order of  2  mm (Akers et al.,
1986). This is  consistent with the results of LOFT and PBF programs
(Chikhi et  al.,  2014). Concerning cladding particles, it can be cal­
culated (Coindreau et  al., 2013) that their average Sauter diameter
ranges from 1.1 mm to 1.7 mm.

The porosity of  the TMI­2 debris bed has been determined by
Akers et  al. (1986), and has been found to range from 0.35 to  0.55.
An average value of 0.4 is usually used for safety analysis, and for
moderately irradiated fuel,  for example by  Bürger et  al. (2006).

Geometry of debris beds is different when created from
re­solidification of molten materials falling in liquid water. Granu­
lometry of  this kind of  debris beds has been investigated by many



Table  1

Instrumentation used on the CALIDE facility.

(a) Flow­meters

Name Range Accuracy

Air
flow

BRONKHORST® 0–10 Nl/min 0.5 % × Reading

F­201­CV
BRONKHORST® 0–200 Nl/min
F­202­AV +0.1 %  ×  Range

BRONKHORST® 0–1000 Nl/min
F­203­AV

Water
flow

BRONKHORST® 0–30 kg/h 0.2 % × Reading

Cori­Flow M14
BRONKHORST® 0–600 kg/h
Cori­Flow M55

(b)  Pressure sensors

Name Range Max. range (MR) Accuracy

Diff
ROSEMOUNT® −1–7  mbar ±14.19 mbar 0.045 % ×  MR

3051
ROSEMOUNT® −10–200 mbar ±1246 mbar 0.04 % × Reading

3051 +0.023 %  × MR

Abs  ROSEMOUNT® 0–2  bar 55.2  bar 0.025 % ×  Range

3051

experimental programs on steam explosions. Although the aver­
age size of particle is  comparable with in­core debris, ranging from
1 mm (Huhtiniemi et  al., 1997; Huhtiniemi and Magallon, 1999) to
5 mm (Spencer et al., 1994), the size distribution is  much wider.
For example, sizes varying from 0.25 to more than 10  mm have
been observed in  the FARO experiments (Magallon and Huhtiniemi,
2001). Porosity of  this kind of  bed has been observed to be  higher
than fuel debris beds, ranging from 0.50 to almost 0.70 (Chikhi et  al.,
2014). But Ma and Dinh (2010) pointed out that particles, in  that
case, present an important internal porosity, which leads to over­
estimate the effective porosity. Thus, these values should not be
considered as references.

Therefore, the size of the debris ranges from a few hundred
microns to approximately 10 mm. Porosity of debris beds ranges
from 35% to 55%.

As explained in  the introduction, particle beds studied in CALIDE
are designed to  be representative of  nuclear debris beds. They are
presented in  Table 2.  Non­spherical particle beds and mixtures of
spherical particles have been studied.

Non spherical particles (Table 2) consist in  three kinds  of cylin­
ders and two kinds of prisms. Their dimensions are of the order of
fuel pellets fragments. For each kind of particle, geometrical charac­
teristics (diameter, side length, height, surface, volume) have been
determined from samples of  10  particles. Diameters and heights
have been measured with a  caliper, prisms length and particle
surface have been determined from picture analysis, and particle
volumes have been determined by  the water displacement method,
which also allowed to  measure the particle densities. Table 3(a)
summarizes porosity of each bed  for air and water experiments.

Nominal sizes of  spherical particles range from 1.5 mm to 8  mm.
For each size, actual diameters have been measured with a  caliper
in 4 directions for each one of a  30  particles representative sample.
The obtained mean values and standard deviations are summarized
in Table 2. Multi­sized spherical particle beds have been consid­
ered, in order to study the effect of size distribution on pressure
losses. Table 3(b) summarizes the composition and porosity of each
mixture.

2.3. Determination of porosity

Pressure loss is very sensitive to  porosity. The adopted method
consists in determining the volume of the pores by measuring the

mass of water mw that is  necessary to fill  it up. The bed  height is
precisely adjusted on a reference mark situated H = 499.0 ±  1.6  mm
above the bottom supporting wire mesh. Knowing the diameter D

of  the test section, porosity can then be determined by:

ε  =
mw4

�w�D2H
. (10)

Porosities of each bed are summarized in Table 3(a) and (b). They
range from 35% to 40%, which fits the average porosity of  debris
beds.

3.  Identification of single­phase flow regimes in particle

beds

As explained in  the introduction, Darcy’s law only holds in
creeping regime, for Reynolds numbers lower than a  limit value
ranging from 1 to  10 (Chauveteau and Thirriot, 1967; Mei and
Auriault, 1991; Lasseux et  al., 2011). For higher Reynolds num­
bers, modifications in  pore­scale flow structure lead to a deviation
to  Darcy’s law, or Forchheimer effects. In non­structured particle
beds, this deviation is usually admitted to be quadratic. However,
it  has been shown, by  theoretical considerations and by numeri­
cal simulations, that this is  an approximation and that deviation
to Darcy’s law should be cubic  (Wodié and Levy, 1991; Firdaouss
et al.,  1997; Lasseux et  al., 2011; Yazdchi and Luding, 2012).  This
assertion has never been confirmed by experimental observations,
to our  knowledge, in  disordered porous media. In  this section, an
investigation on the form of  deviations to Darcy’s law is  proposed
for particle beds representative of  nuclear debris beds.

3.1. Darcy regime

Darcy regime is characterized by a  linear dependence between
pressure losses and filtration velocity:

−
∂P

∂z
+  �g =

�

K
U, (11)

where K  is the permeability of  the medium. Equation 11 is equiva­
lent to:

�U

− ∂P
∂z

+  �g
= K. (12)



Table  2

Spherical and non­spherical particles used  in CALIDE experiments. Materials are glass for spherical particles and porcelain for non spherical particles.

Diameter (mm) Density (kg/m3)

Spheres

1.5 1.574 ± 0.031 2574.0 ± 7.4
2  2.086 ± 0.033 2568.0 ± 7.4
3  2.940 ± 0.044 2560.0 ± 7.4
4  4.058 ± 0.031 2560.0 ± 7.4
8  7.877 ± 0.116 2568.0 ± 7.4

Diameter/side (mm) Height (mm) Surface (mm2) Volume (mm3) Density (kg/m3)

Cylinders
5 × 5  5.13  ±  0.08 4.53  ± 0.23 114.1 ± 4.2 97.89 ± 0.55 2572.0 ± 7.4
5  × 8 4.86  ±  0.08 7.39 ± 0.37 150.3 ± 6.7 140.46 ± 0.51 3046.0  ± 8.8

8  ×  12 7.99 ±  0.10 11.13 ± 0.48 380 ± 11 575.5 ± 2.9 2568.0 ± 7.4

Prisms
4  × 4  4.15  ±  0.11 3.84  ± 0.13 69.8  ± 1.1 41.55 ± 0.55 2568.0 ± 7.4
6  × 6  6.11  ±  0.15 5.87  ± 0.19 156.8 ± 4.1 144.2 ± 1.0  2452.0 ± 7.1

Table 3

Characteristics of  particle beds. Different beds, although packed with the same particles, have been used  for air and water experiments, which explains why  porosity can  be
slightly  different in air and water flows.

(a) Non­spherical particles

Cylinder Flowing fluid ε

5 ×  5
Air 0.3525 ± 0.0041
Water 0.3525 ± 0.0041

5 ×  8
Air 0.3954 ± 0.0047
Water 0.3843 ± 0.0045

8 ×  12
Air 0.3855 ± 0.0053
Water 0.3642 ± 0.0065

Prism Flowing fluid ε

4 ×  4
Air 0.3646 ± 0.0041
Water 0.3750 ± 0.0064

6  ×  6
Air 0.3699 ± 0.0065
Water 0.3666 ± 0.0065

(b) Mixtures of  spherical particles

Mixture number 1.5 mm  2 mm  3 mm 4 mm 8 mm Flowing fluid ε

(%w)  (%w) (%w (%w) (%w)

1 68.81 – *–  21.05 10.14 Air 0.3592 ± 0.0064
Water 0.3592 ± 0.0064

2  59.48 – 28.28 12.24 – Air 0.3526 ± 0.0039
Water 0.3646 ± 0.0038

3  – 43.95 – 40.07 15.98 Air 0.3542 ± 0.0049
Water 0.3578 ± 0.0064

4  38.69 36.95 22.64 1.06 0.67 Air 0.3592 ± 0.0064
Water 0.3587 ± 0.0064

Thus, the left hand side term of  Eq. (12)  should be  constant and
equal to  the permeability when Darcy regime occurs. Then it should
progressively decrease when inertial effects appear. Fig. 3  shows its
evolution in  the case of 4 × 4 mm prisms in  air flow. Except for very
low Reynolds numbers, where measurement uncertainties cause
an important noise, Darcy regime is  clearly identified up  to  a limit
value of  2.5, approximately.

Precise determination of  this limit is  not  obvious, since the
magnitude of  Forchheimer effects around this point is  below mea­
surement uncertainties. An arbitrary criterion is used here, and
consists in verification that the permeability, identified by  appli­
cation of  least square fitting between pressure losses and filtration
velocity corresponding to diamond symbols in  Fig. 3, and rep­
resented by the  continuous line, must be included within the
uncertainty range of  all values of  expression (12) in  Darcy regime.

Similar behaviors are observed for all particle beds in this study,
and for  air  and water flows, and are  summarized in  Fig. 4(a)–(d). For
reasons of  clarity, evolution of  expression (12) is  shown in  Darcy
regime only, up to apparition of  Forchheimer effects. Thus, Darcy’s
law constitutes a rigorous description of macroscale behavior of

Fig. 3. Evolution of expression (12) at low Reynolds number for 4 × 4  mm prisms in
air  flow. Its  value is constant for Re <  2.5.



(a) (b)

(d)(c)

Fig. 4. Identification of Darcy regime for beds packed with non­spherical particles and multi­sized spherical particles. For each bed, the value of  the permeability identified
with  least square method is  plotted as constant continuous lines. c5 ×  5 means 5 mm×5 mm cylinders, p4 ×  4 means 4 mm×4 mm prisms, mix1 means mixture n◦1 in
Table 3(b), etc.

pressure losses, except at very low Reynolds number for certain
particle beds, where permeability is significantly smaller. This kind
of “pre­darcy” regime, which is  not supported by any theoretical
development, requires further analysis. However, the authors point
out that it occurs at small Reynolds numbers, where pressure losses
are very weak (of the order of 1  Pa). Therefore, it could be caused by
an experimental error, for example an  unforeseen singular pressure
drop, or a drift of  the  pressure sensor.

The limit Reynolds number for Darcy’s regime, in these experi­
ments, ranges between 2 (4 × 4  mm prisms in air flow, Fig. 4(a)) and
15 (8 × 12 mm cylinders in water flow,  Fig. 4(b)), which is  consistent
with literature (Chauveteau and Thirriot, 1967; Mei and Auriault,
1991; Lasseux et al., 2011).

This study also allowed to  determine the permeabilities of  the
tested particle beds, which will be used in  next paragraphs to deter­
mine the deviation to  Darcy’s law at higher Reynolds numbers, and
in Section 4  to identify a  correlation for permeability of the tested
particle beds.

3.2. Weak inertial regime

As explained in the introduction, first pore­scale inertial effects
should result in a  cubic deviation to  Darcy’s law, which corresponds
to the Weak Inertial regime:

−
∂P

∂z
+ �g =

�

K
U  + bU3. (13)

The Weak Inertial regime has been theoretically derived from
Navier–Stokes equations using the Homogenization method (Mei
and Auriault, 1991; Wodié and Levy, 1991; Firdaouss et al., 1997)
and reproduced by numerical simulations (Lasseux et al., 2011;
Yazdchi and Luding, 2012), but never observed experimentally in
disordered particle beds. Indeed, experimental observation is  very
difficult, because of  the very low magnitude of  the cubic  deviation,
which is lost in measurement noise. Nevertheless, and given the
high precision of the instrumentation of  the CALIDE facility, the
existence of Weak Inertial regime in tested particle beds is worth
investigating, especially considering the lack of experimental data
on that question.

Eq. (13) is  equivalent to  a  linear dependence between deviation
to Darcy’s law and Reynolds number power 3:

−
∂P

∂z
+  �g −

�

K
U  = bU3

=  b′Re3, (14)

or, equivalently, to a  linear dependence between deviation to
Darcy’s law, normalized by the Darcy term, and Reynolds number
squared:

− ∂P
∂z

+  �g −
�
K U

�
K U

=
bU3

�
K U

=
bK

�
U2 = b′′Re2. (15)

Fig. 5  is  a log–log plot of normalized deviations to  Darcy’s law for
4  ×  4  mm prisms with Reynolds number. Deviations emerge from



Fig. 5.  Normalized deviations to the Darcy’s law versus Reynolds number in the case
of  4 ×  4  mm prisms in water flow.

experimental noise beyond Re  >  10, and fit  with a power law of
exponent 2.4. A change of behavior is observed around Re = 20, the
slope of the correlation dropping from 2.4 to 1.2 beyond that point,
which is much closer to the expected value in case of  quadratic
deviations to  Darcy’s law, which is 1.

Similar behavior has been observed for all particle beds, in air
and water flow. Results are summarized in  Fig. 6(a)–(d). First devia­
tions to Darcy’s law fit with power laws of  exponents ranging from

1.6 to 3.3 and globally close to 2  (expressions are given in the legend
of  the graphs). Beyond a limit value for Reynolds number, which
depends on the medium but ranges from 5 to 50  approximately,
the  slope of  the correlation drops to  a  value close to 1. However,
and for reasons of clarity, data are not  shown beyond that limit in
Fig. 6(a)–(d).

This shows that deviations to Darcy’s law significantly differ
from the quadratic law  as  long as  Reynolds number remains below
certain limits, and that they  can be described by power laws of
exponents globally of  the order of 2. This supports the existence
of the Weak Inertial regime in disordered particle beds, and Eq.
(13) seems plausible to describe the behavior of  pressure losses
in that regime. However, it should be pointed out  that measure­
ment uncertainties are quite large, because of  the weakness of  the
magnitude of the Weak Inertial deviations, and that further studies
should be conducted on that question.

3.3. Strong inertial regime

A quadratic deviation to  Darcy’s law usually fits well with exper­
imental data at high Reynolds numbers in disordered particle beds
(Forchheimer, 1901; Ergun, 1952; MacDonald et  al., 1979; Nemec
and Levec, 2005; Ozahi et al., 2008; Li and Ma, 2011a), which cor­
responds to the Strong Inertial regime, as opposed to  the Weak
Inertial regime:

−
∂P

∂z
+  �g =

�

K
U +

�

�
U2. (16)

(a) (b)

(d)(c)

Fig. 6. Normalized deviations to Darcy’s law in Weak Inertial regime versus Reynolds number.



Fig. 7. Evolution of  expression (17) versus Reynolds number for 8 × 12  mm  cylinders
in  water flow between Weak Inertial regime and maximum flow velocity. Its value
is  constant for Re >  80.

Verification of  the applicability of  this equation to the bed tested
in this study will  be made by using a method analog to the one
used in Darcy regime in Section 3.1, which consists in  studying the
evolution with Reynolds number of  the expression:

�U2

− ∂P
∂z

+ �g −
�
K U
, (17)

Fig. 8. Schematical evolution of  the behavior of  pressure losses in particle beds.

which should be constant and equal to the passability � if  Eq.  (16)
is  verified. Fig. 7  presents the evolution of  expression (17)  with
Reynolds number between Weak Inertial regime and maximum
flow velocity observed in  that study, for 8  ×  12  mm cylinders in
water flow. A constant value is observed for Re >  80, which means
that Eq. (16)  is  verified, and so that deviations to Darcy can be
described by  a  quadratic law in that domain. It has been shown that
these deviations fit  with a  cubic law  in  Weak Inertial regime, which
applies between Darcy regime and Re  <  50  in  that case. Between
Re =  50  and Re =  80, neither cubic nor quadratic law fits with exper­
imental data. This corresponds to the “transition” regime in Fig. 7.

(a) (b)

(d)(c)

Fig. 9. Identification of  Strong Inertial regime.



Similar behaviors, summarized in  Fig. 9(a)–(d), are observed
for each particle bed. Expression (17) is found to be almost con­
stant over a  large range of Reynolds number, which means that a
quadratic law is  relevant to describe deviations to Darcy’s law in
the Strong Inertial Regime. Since no significant change of  behavior
is observed for Reynolds numbers of  several hundred, where weak
pore­scale turbulence, at least, should occur, we  may conclude that
the validity domain of  this approximation can be extended to  Weak
Turbulent regimes.

3.4. Discussion

At this point, pressure losses generated by non­spherical parti­
cle beds and mixtures of  spherical particle beds in single­phase
air and water flows have been measured in the CALIDE experi­
mental facility. These measurements allowed to identify 3 flow
regimes (Fig. 8): Darcy regime, which is  characterized by a  lin­
ear relationship between pressure losses and filtration velocity or
Reynolds number, Weak Inertial regime, characterized by a  cubic
deviation to Darcy’s law, and Strong Inertial regime, characterized
by a quadratic deviation to Darcy’s law. Transition Reynolds num­
bers between these regimes depend on the medium but seem to
be, for the observed particle beds, of the order of Re ≈  10  for tran­
sition between Darcy and Weak Inertial regime, and of  the order
of Re ≈ 30 for transition between Weak Inertial and Strong Inertial
regimes. These  experiments do  not give information about appari­
tion of  turbulence, but weak turbulence, at least, should occur
for Reynolds numbers of  several hundred, a fortiori for Re ≈  1000.
However, no significant difference was observed in the macro­
scale behavior of pressure losses between Strong Inertial and Weak
Turbulent regimes. Therefore, applicability of  quadratic law to
describe deviations to Darcy’s law can be  extended to Weak Tur­
bulent regime, at least for the type of  medium considered in this
analysis .

It should also be pointed out that deviations to  Darcy’s law in
Weak Inertial regimes are  small compared to the Darcy term (30%
at maximum, in Fig. 6(b)), and sometimes even smaller than mea­
surement uncertainties. Thus, describing Weak Inertial term by a
quadratic law, instead of  a  cubic law, does not lead to an important
error on the total pressure loss prediction. For that reason, and for
simplicity of use in practical applications or codes, quadratic devi­
ation to  Darcy’s law will be considered as  a  good approximation,
also in the Weak Inertial regime.

Therefore, Eq. (16) is  relevant in Weak Inertial, Strong Iner­
tial and Weak Turbulent regimes. Furthermore, since the quadratic
term becomes negligible before the Darcy term for small velocities,
its validity can obviously be  extended to  the Darcy regime.

Establishment of  a  predictive correlation now requires expres­
sions for permeability and passability, which range over more
than one order of  magnitude. This is the objective of  the next
section.

4. Single­phase pressure losses correlation in particle beds

In previous sections, it has been established that pressure losses
in the studied particle beds can be accurately described by:

−
∂P

∂z
+ �g =

�

K
U +

�

�
U2, (18)

where K and � are characteristics of the medium called permeability
and passability, respectively. Permeabilities and passabilities have
been experimentally determined for non­spherical particle beds
and multi­sized spherical particle beds, and for air and water flows.
Results are summarized in Table 5,  for non­spherical particle beds,
and in Table 6, for multi­sized spherical particle beds.

As said in  the Introduction, expressions for permeability and
passability have been proposed by  Ergun (1952), in the case of
monodisperse beds, i.e., single­sized spherical particle beds:

K  =
ε3d2

hK (1  − ε)2
(19)

� =
ε3d

h� (1  − ε)
, (20)

where ε is  the porosity of the bed,  d  the diameter of  the particles and
hK and h� two empirical parameters called the Ergun constants. The
objective of this section is  to  investigate the applicability of  these
expressions to  the non­monodisperse beds studied in  this work, by
assessing the possibility to define equivalent diameters, defined as
the dimension that allows a  correct prediction of  permeability or
passability by  Eqs. (19) and (20). Although physically meaningless
if one consider the upscaling of  Navier–Stokes equations, this kind
of  approach has been found relevant, from an  empirical point of
view, to predict permeability of debris­bed­like media (Chikhi et  al.,
2014). It is  proposed here to  extend this concept to non­Darcy flows.
Thus, permeabilities and passabilities of tested particle beds will be
expressed as:

K  =
ε3d2

K

hK (1  − ε)2
(21)

� =
ε3d�

h� (1  − ε)
, (22)

where dK and d� are the equivalent diameters for permeability and
passability, respectively. It  should be noted that dK and d� may be
a priori different.

4.1. Ergun constants

There is  little dispersion on values of  Ergun constants in  lit­
erature. Ergun (1952) recommended hK =  150  and h� =  1.75, while
MacDonald et al. (1979) preferred hK =  180 and h� =  1.8. Ozahi et al.
(2008) observed hK =  160  and h� =  1.61 for high Reynolds flows
(800 → 8000). Thus, recommended values for hK and h� may  vary
by  more than 20%. Furthermore, MacDonald et  al. (1979) pointed
out that surface rugosity of  particles is  of  great influence on h�,
which could range from 1.8  for smooth particles to more than 4 for
very rough particles.

In order to eliminate this source of  uncertainty, specific exper­
iments on monodisperse beds have been conducted in order to
determine the values of hK and h� for the spherical particles used
in that study (Table 2). Thus, best fitting values for hK and h� have
been identified for monodisperse beds packed with 1.5 mm,  2 mm,
3 mm, 4  mm and 8  mm glass beads, in  air  and water flows. Results
are summarized in Table 4. Ergun constants seem to differ when
identified with air or water data, which could indicate that the pore­
scale flow structure is different in air and water flows. However,
the identified values remain within the range of  literature recom­
mendations. Besides, the Ergun law is  an  empirical correlation, and
significant dispersions have been observed for hK and h�. Macdon­
ald  et al. (MacDonald et  al.,  1979), for example, observed that the
dispersion on hK could be greater than 50%. Since our data present
a  less­than­10% dispersion, we can be confident that using their
mean values is relevant in that study.

Mean value for hK is 181 ± 17, which is  in agreement with
MacDonald et  al. (1979), while mean value for h�, of 1.63 ± 0.15,
is closer to recommendation of  Ozahi et  al. (2008). These values
will be used in  next paragraphs to identify equivalent diameters
for non­monodisperse particle beds.

The authors point out that these values are specific to the
particles used in  this study, i.e., smooth particles. Although they



Table  4

Ergun constants best fitting values for each particle size. Standard deviations, which correspond to the uncertainties on  the mean values, are less than 10%.

d (mm) hK h�

Air Water Air Water

1.5 167.4 ± 5.5 196.4 ± 10.8 1.79 ± 0.01 1.41 ± 0.07
2  169.1 ± 5.8 183.1 ± 9.7 1.61 ± 0.06 1.74 ± 0.06
3  168.8 ± 4.6 175.4 ± 9.7 1.78 ± 0.11 1.60 ± 0.06
4  177.0 ± 6.1 178.6 ± 8.3 1.78 ± 0.09 1.54 ± 0.04
8  189.2 ± 27.9  206.3 ± 17.8 1.57 ± 0.07 1.46 ± 0.09

Mean  181 ± 17 1.63  ± 0.15

present a good agreement with recommended values in literature,
they should be used carefully with other classes of particles (very
rough particles, for example), especially considering the dispersion
reported in MacDonald et al. (1979).

4.2. Non­spherical particles beds

From various existing definitions in literature (Ozahi et  al., 2008;
Li and Ma, 2011b) for equivalent diameters, 4 have been identified
as potentially relevant for this study:

• Volume equivalent diameter

dV =

(
6vpart

�

)1/3

;  (23)

• Surface equivalent diameter

dS =

(
spart
�

)1/2

;  (24)

• Specific surface equivalent diameter, or Sauter diameter

dSt =
6Vpart
Spart

=
6vpart

spart
. (25)

• Product of  Sauter diameter and an adimensional sphericity coef­
ficient, corresponding to the ratio between the surface of volume
equivalent sphere and the actual surface of the particle.

dSt  =
6vpart

spart

�1/3(6vpart)
2/3

spart
(26)

4.2.1. Permeability

Identification of  equivalent diameter for permeability, dK,  is
done by studying the difference between experimental data in
Darcy regime and prediction of  Darcy’s law, where permeability
is calculated with Eq. (19) using dV,  dS,  dSt or dSt  as the character­
istic dimension d. This difference is normalized by  the experimental
pressure loss:
(
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(27)

Expression (27) has been evaluated for each one of  the 4 poten­
tial equivalent diameters, for each one of  the 5  non­spherical
particle beds considered, in air and water flows, defining 4 sets
of 10 values (see left columns Table 5). Mean value and standard
deviation of these sets have been determined. In order to  repre­
sent these results in  a more visual way, Fig. 10(a) shows Gaussian

distribution functions of corresponding mean values and standard
deviation.

It can be seen in Fig. 10(a) that the Sauter diameter dSt is  the one
which allows the best prediction, on average, of  pressure losses in
Darcy regime, while dSt  leads to  underestimate them, by 24.5%,
and dV and dS to  overestimate them, by 34.2% and 55.3%, respec­
tively. Furthermore, predictions of  pressure losses using dSt  and
dSt present the lowest dispersions, which means that dSt allows a
correct prediction not only on average but also for each tested bed
individually. Indeed, it can be seen in Table 5 that this prediction
always presents a less­than­16% difference with experimental data,
which is  very small for such an experimental correlation. Therefore,
the Sauter diameter dSt constitutes a good equivalent diameter for
permeability of  non­spherical particle beds.

4.2.2. Passability

Similar procedure is  used to determine the equivalent diame­
ter for passability d�.  It is  done by studying the difference between
experimental deviations to  Darcy’s law and prediction using Eq.
(20), where characteristic dimension is dV,  dS, dSt or dSt , normal­
ized by experimental deviations to Darcy’s law:

(

−
∂P

∂z
+  �g −

�U

K

)

(d) −

(

−
∂P

∂z
+  �g −

�U

K

)

exp
(

−
∂P

∂z
+ �g −

�U

K

)

exp

=

�U2

� (d)
−
�U2

�exp

�U2

�exp

=

1

� (d)
−

1

�exp

1

�exp

.

(28)

Mean values and standard deviations of  expression (28), for
each potential equivalent diameter (dV, dS, dSt and dSt ),  have been
determined (see right columns of Table 5), and are represented in
Fig. 10(b) by Gaussian distribution functions. Contrary to Fig. 10(a),
best prediction of deviation to Darcy’s law  is  obtained with the
product of  Sauter diameter and sphericity coefficient dSt , which
leads to  a  9.0% overestimation of  deviation to Darcy’s law, on aver­
age, while dSt,  dV and dS lead to overestimate it by 26.2%, 46.1% and
57.3%, respectively. Therefore, the product of  Sauter diameter and
sphericity constitutes a good choice for the equivalent diameter for
passability of  non­spherical particle beds.

However, it should be pointed out  here that prediction of  devia­
tions to Darcy’s law using this diameter is not correct for all tested
beds (a 23.2% difference is observed for 5  × 8 mm cylinders in water
flow), which suggests that this correlation would turn incorrect
if the Darcy term was small compared to  the quadratic one, and,
therefore, that it presents a  limited validity domain. Nevertheless,
and looking at experimental data obtained in the present study,
the use of this correlation can definitely be recommended within



Table  5

Experimental permeabilities and passabilities of non­spherical particle beds.

Particle Kexp

1
K(d)

− 1
Kexp

1
Kexp

(%) �exp

1
�(d)

− 1
�exp

1
�exp

(%)

(× 10−9m2) dV dS dSt dSt  (× 10−5m) dV dS dSt dSt 

c5 × 5
Air 16.550 ± 0.074 13.8  26.5  −7.8 −25.3 16.90 ± 0.99 40.5  48.0 26.4  13.8
Water  15.00 ± 0.22 24.2  38.0 0.6 −18.5 17.74 ± 0.15 32.5  39.6  19.3  7.3

c5  × 8
Air 27.21 ±  0.11 41.2  62.5  6.7 −19.4 30.30 ± 0.67 32.5  42.1  15.2  0.1
Water  17.24 ±  0.19 48.6 70.9 12.3 −15.1 17.41 ± 0.14 63.0 74.9  41.7  23.2

c8  × 12
Air 66.00 ± 0.49 35.1  53.6  4.5 −19.2 46.81 ± 0.68 26.2  34.6  11.0 −2.3
Water  47.15 ±  0.34 48.9  69.3  15.2 −10.9 37.75 ± 0.35 27.5  36.0 12.2  −1.4

p4  × 4
Air 10.054 ± 0.040 21.7  46.5  −16.0 −42.1 12.44 ± 0.77 61.9  77.6  34.5  11.7
Water  9.63 ± 0.18 42.8  71.9  −1.5 −32.1 13.11 ± 0.12 69.8  86.3  41.1  17.2

p6  × 6
Air 24.78 ±  0.16 20.2 41.7  −13.5 −37.8 20.9 ± 1.0 53.7  66.9  30.3 10.5
Water  19.70 ± 0.27 45.7 71.8 4.8 −24.6 20.29  ± 0.18 53.2 66.4  30.0 10.2

Mean 34.2 55.3  0.5 −24.5 46.1  57.3  26.2  9.0
Standard deviation 13.1  16.4  10.4 10.0 16.2  19.3  11.3  8.3

(a) (b)

Fig. 10. Identification of equivalent diameter for non­spherical particle beds.

the investigated range of  Reynolds numbers, i.e., from Re  =  0 to
Re =  1500:
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�U +

h�(1 −  ε)

ε3dSt 
�U2, (29)

where:

dSt =
6Vpart
Spart

(30)
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(31)

hK =  181  (32)

h� = 1.63. (33)

4.3. Multi­sized spherical spherical particles

The objective of  this paragraph is to  determine mean diame­
ters for  the studied multi­sized spherical particle beds. From many
definitions of mean diameters existing in the literature, 4 seem
particularly interesting:

• Number mean diameter
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;  (34)

• Length mean diameter
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• Surface mean diameter
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• Volume mean diameter
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∑
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i
ni
. (37)

4.3.1. Permeability

Identification of equivalent diameters for permeability, dK,
and passability, d�, is done by a  similar method to the case of
non­spherical particle beds. Expressions (27) and (28) have been
evaluated for each one of the 4  potential equivalent diameters, for
each one of the 4 non­spherical particle beds considered, in  air  and
water flows (see  Table 6). Fig. 11(a) summarizes results for perme­
ability, and shows that the Surface mean diameter, d〈s〉,  allows the
best  prediction of pressure losses in Darcy regime, since it leads
to slightly overestimate it by less than 4.6% on average, while the
Volume mean diameter d〈v〉 leads to underestimate it by 26.8%, and
Length mean diameter d〈l〉 and Number mean diameter d〈n〉 leads to
overestimate it respectively by 32.2% and 51.0%. Furthermore, pre­
dictions of pressure losses in  Darcy regime corresponding to d〈s〉

present the smallest dispersion, which shows that this diameter



Table  6

Experimental permeabilities and passabilities of  multi­sized spherical particle beds.

Mixture Kexp

1
K(d)

− 1
Kexp

1
Kexp

(%)  �exp

1
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�exp

1
�exp

(%)

(×  10−9m2) d〈n〉 d〈l〉 d〈s〉 d〈v〉 (×  10−5m) d〈n〉 d〈l〉 d〈s〉 d〈v〉

1 Air  2.499 ± 0.083 50.3 34.5  0.2 −46.9 8.87 ± 0.15 22.2  15.6  −0.3 −27.3
Water  2.402 ± 0.028 44.4  29.2  −3.8 −48.9 7.54 ± 0.33 3.9 −1.7  −15.2 −38.2

2  Air  2.512 ± 0.012 50.2 32.7  8.9 −16.6 7.532 ± 0.075 6.4 0.0  −9.4  −20.7
Water  2.735 ± 0.038 63.5 44.5 18.5 −9.2  8.23 ± 0.32 16.3  9.3 −1.0 −13.4

3  air  5.837 ± 0.029 80.5 48.8  7.8 −31.6 13.48 ± 0.13 36.0 23.5  5.1  −16.2
Water  5.50 ± 0.11 69.9  40.1 1.5 −35.6 13.55 ± 0.35 36.7  24.1  5.7  −15.8

4  Air  2.723 ± 0.013 34.7  23.4  9.9 −5.8 7.724 ± 0.088 −3.2  −7.4  −12.6 −19.1
Water  2.315 ± 0.027 14.5  4.9  −6.5 −19.9 9.10 ± 0.37 14.0 9.1 3.0  −4.7

Mean  51.0 32.2  4.6 −26.8 16.5  9.1 −3.1  −19.4
Standard deviation 20.8 13.8 8.2 16.4 14.5 11.6 8.2  10.0

(a) (b)

Fig. 11.  Identification of equivalent diameter for multi­sized­spherical particle beds.

allows a  correct prediction not only  on average but also for each
tested bed  individually. Thus, it can be seen in Table 6  that this
prediction always presents a  less­than­10% difference with exper­
imental data, except for mixture 2  in water flow, for which this
difference is 18.5%, which remains reasonable. Therefore, the equiv­
alent diameter for  permeability of  multi­sized spherical particle
beds is the  Surface mean diameter d〈s〉.

4.3.2. Passability

Similar observations can be made for passability results. Mean
values and standard deviations of expression (28), for each poten­
tial equivalent diameter, have been determined (see right columns
of Table 6), and are represented in Fig. 11(b) by Gaussian laws. It
can be seen that Surface mean diameter allows the best  prediction
of deviation to Darcy’s law. Indeed, it leads to  a  slight underesti­
mation, by 3.1%, while d〈v〉 leads to underestimate it by  19.4%, and
d〈l〉 and d〈n〉 lead to an  overestimation by  9.1% and 16.5%, respec­
tively. Furthermore, predictions of deviations to  Darcy’s law using
this diameter present the smallest dispersion. Therefore, the equiv­
alent diameter for passability of  multi­sized spherical particle beds
is the Surface mean diameter.

Thus, it  has been shown at this point that pressure losses gen­
erated by non­spherical particle beds and multi­sized spherical
particle beds can be accurately predicted by Ergun’s law using an
“equivalent diameter” approach for permeability and passability.
It has been observed that equivalent diameters for permeability
and passability of non­spherical particle beds are the Sauter diam­
eter of the particles and the product of  the Sauter diameter and the
sphericity coefficient, respectively. The same study, on multi­sized

spherical particle beds, showed that equivalent diameters for per­
meability and passability of this kind of particle bed are both equal
to  the surface mean diameter. It  is of fundamental interest here to
remark that these observations are consistent: indeed, the surface
mean diameter of a  multi­sized spherical particle bed is  equal to  its
Sauter diameter:

d〈s〉 =

∑

i
d3
i
ni

∑

i
d2
i
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6
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i

6 ni
∑
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i
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=
6
∑

i
vini

∑

i
sini

=
6Vpart
Spart

= dSt, (38)

and the sphericity coefficient is 1 for spherical particles.
Therefore, applicability of Eqs.  (29)–(33) can be extended to

all tested particle beds, i.e., both non­spherical particle beds and
multi­sized spherical particle beds, and in  Darcy to  Weak Turbulent
regime.

5.  Conclusions

Motivated by  uncertainty reduction in nuclear debris beds
coolability, experiments have been conducted on the CALIDE
facility in order to  investigate single phase pressure losses in  rep­
resentative debris beds.

In this paper, experimental results obtained on the CALIDE facil­
ity  have been presented and analyzed in order to identify a simple
single­phase flow pressure loss correlation for debris­bed­like par­
ticle beds covering various reflooding flow conditions.

On the basis of current literature, Reynolds number in  single­
phase parts of a  nuclear debris bed was estimated to range from
Re  =  15  to more than Re  =  1000, and debris bed granulometry was



estimated between a  few hundreds microns to  10  mm, with convex
high  sphericity shapes and porosity of the order of 40%.

Experimental data obtained on the CALIDE facility have been
interpreted to  determine the macro­scale behavior of  pressure
losses in  particle beds. It was observed that a Darcy–Forchheimer
law, involving the sum of  a linear term and a  quadratic term, with
respect to fluid velocity, was relevant to describe this behavior
in Darcy, Inertial and Weak Turbulent regimes. It  has also been
observed that, in  a  restricted domain between Darcy and Inertial
regimes, deviation to Darcy’s law is  better described by a  cubic
term. This corresponds to the so­called Weak Inertial regime, which
can be theoretically derived from pore­scale Navier­Stokes equa­
tions, and reproduced in numerical simulations, but has never been
observed experimentally, to our  knowledge, on disordered porous
media. Nevertheless, it was pointed out  that Weak Inertial devi­
ation is very small compared to Darcy term, and, therefore, that
Darcy–Forchheimer law remains relevant even in  the Weak Inertial
regime.

Darcy–Forchheimer law  allowing a  qualitative description of
pressure losses only, it was necessary to determine expressions for
coefficients of linear and quadratic terms in order to obtain a pre­
dictive correlation. Applicability of the Ergun’s law, which is  valid
for monodisperse particle beds only, was investigated by assessing
the possibility to define equivalent diameters for the studied beds.
This approach has  been found to be relevant for both permeabil­
ity and passability prediction. It  was observed that permeabilities of
all tested beds, i.e., non­spherical and multi­sized spherical particle
beds, could be precisely predicted, by  less than 10% in  most cases,
by Ergun expression using the Sauter diameter, while the product
of the Sauter diameter and the sphericity coefficient   allowed for
an  accurate prediction of passabilities, by  about 15%.

Therefore, the following correlation can be recommended for
calculation of single­phase pressure losses in nuclear debris beds
during reflooding, for Reynolds numbers ranging from 0 to 1500:

−
∂P

∂z
+ �g =

181(1 − ε)2

ε3d2
St

�U +
1.63(1 − ε)

ε3dSt 
�U2, (39)

Appendix A.  Effect of gas compressibility

In air flows, the density is  a function of  pressure. The perfect gas
hypothesis states:

�  =
P

rT
,  (40)

where P is the absolute pressure, T the absolute temperature and
r the specific gas constant, which is equal to 287 for air. Thus, the
pressure losses along the test section are causing drops of  the gas
density and velocity. When compressibility effects are taken into
account, the Ergun equation can be  re­written as:
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where ṁ is the mass flow rate, which is  constant along the test
section. By introducing the perfect gas hypothesis, we get:

Integration of Eq. (43) over the column height leads to:
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ṁ

�D2/4

)2
]

(46)

⇔  −
1P

H
=
�

K

ṁ

�̄�D2/4
︸ ︷︷  ︸

U(�̄)

+
�̄

�

(
ṁ
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Therefore, compressibility effects are taken into account by  cal­
culating the gas density at the average pressure P1+P2

2 .  The authors
would like to point out  that this correction has a  very weak impact
in this work, since the pressure loss magnitude is of a  few millibars
at maximum, which is very small compared to  the atmospheric
pressure. However, compressibility effects would play a  significant
role if pressure losses were not small compared to the absolute
pressure of  the system (higher columns, greater velocities . . .)
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