111 research outputs found

    Safety and immunogenicity of H1/IC31®, an adjuvanted TB subunit vaccine, in HIV-infected adults with CD4+ lymphocyte counts greater than 350 cells/mm3: a phase II, multi-centre, double-blind, randomized, placebo-controlled trial.

    Get PDF
    BACKGROUND: Novel tuberculosis vaccines should be safe, immunogenic, and effective in various population groups, including HIV-infected individuals. In this phase II multi-centre, double-blind, placebo-controlled trial, the safety and immunogenicity of the novel H1/IC31 vaccine, a fusion protein of Ag85B-ESAT-6 (H1) formulated with the adjuvant IC31, was evaluated in HIV-infected adults. METHODS: HIV-infected adults with CD4+ T cell counts >350/mm3 and without evidence of active tuberculosis were enrolled and followed until day 182. H1/IC31 vaccine or placebo was randomly allocated in a 5:1 ratio. The vaccine was administered intramuscularly at day 0 and 56. Safety assessment was based on medical history, clinical examinations, and blood and urine testing. Immunogenicity was determined by a short-term whole blood intracellular cytokine staining assay. RESULTS: 47 of the 48 randomised participants completed both vaccinations. In total, 459 mild or moderate and 2 severe adverse events were reported. There were three serious adverse events in two vaccinees classified as not related to the investigational product. Local injection site reactions were more common in H1/IC31 versus placebo recipients (65.0% vs. 12.5%, p = 0.015). Solicited systemic and unsolicited adverse events were similar by study arm. The baseline CD4+ T cell count and HIV viral load were similar by study arm and remained constant over time. The H1/IC31 vaccine induced a persistent Th1-immune response with predominately TNF-α and IL-2 co-expressing CD4+ T cells, as well as polyfunctional IFN-γ, TNF-α and IL-2 expressing CD4+ T cells. CONCLUSION: H1/IC31 was well tolerated and safe in HIV-infected adults with a CD4+ Lymphocyte count greater than 350 cells/mm3. The vaccine did not have an effect on CD4+ T cell count or HIV-1 viral load. H1/IC31 induced a specific and durable Th1 immune response. TRIAL REGISTRATION: Pan African Clinical Trials Registry (PACTR) PACTR201105000289276

    Comparing the performance of QuantiFERON-TB Gold Plus with QuantiFERON-TB Gold in-tube among highly TB exposed gold miners in South Africa

    Get PDF
    Background: QuantiFERON-TB-Gold-in-tube (QFT-GIT) is an interferon-gamma release assay (IGRA) used to diagnose latent tuberculosis infection. Limited data exists on performance of QuantiFERON-TB Gold-Plus (QFT-Plus), a next generation of IGRA that includes an additional antigen tube 2 (TB2) while excluding TB7.7 from antigen tube 1 (TB1), to measure TB specific CD4+ and CD8+ T lymphocytes responses. We compared the performance of QFT-Plus with QFT-GIT among highly TB exposed goldminers in South Africa. Methods: We enrolled HIV-negative goldminers in South Africa, aged ≥33 years with no prior history of TB disease or evidence of silicosis. Blood samples were collected for QFT-GIT and QFT-Plus. QFT-GIT was considered positive if TB1 tested positive; while QFT-Plus was positive if both or either TB1 or TB2 tested positive, as per manufacturer's recommendations. We compared the performance of QFT-Plus with QFT-GIT using Cohen’s Kappa. To assess the specific contribution of CD8+ T-cells, we used TB2−TB1 differential values as an indirect estimate. A cut-off value was set at 0.6. Logistic regression was used to identify factors associated with having TB2-TB1&gt;0.6 difference on QFT-Plus. Results: Of 349 enrolled participants, 304 had QFT-Plus and QFT-GIT results: 205 (68%) were positive on both assays; 83 (27%) were negative on both assays while 16 (5%) had discordant results. Overall, there was 94.7% (288/304) agreement between QFT-Plus and QFT-GIT (Kappa = 0.87). 214 had positive QFT-Plus result, of whom 202 [94.4%, median interquartile range (IQR): 3.06 (1.31, 7.00)] were positive on TB1 and 205 [95.8%, median (IQR): 3.25 (1.53, 8.02)] were positive on TB2. A TB2-TB1&gt;0.6 difference was observed in 16.4% (35/214), with some evidence of a difference by BMI; 14.9% (7/47), 9.8% (9/92) and 25.3% (19/75) for BMI of 18.5-24.9, 18.5-25 and &gt;30 kg/m2, respectively (P=0.03). Conclusion: In a population of HIV-negative goldminers, QFT-Plus showed high agreement with QFT-GIT, suggesting similar performance.</ns3:p

    Comparing QuantiFERON-TB Gold Plus with QuantiFERON-TB Gold in-tube for diagnosis of latent tuberculosis infection among highly TB exposed gold miners in South Africa.

    Get PDF
    BACKGROUND: QuantiFERON-TB-Gold-in-tube (QFT-GIT) is an interferon-gamma release assay (IGRA) used to diagnose latent tuberculosis infection. Limited data exists on performance of QuantiFERON-TB Gold-Plus (QFT-Plus), a next generation of IGRA that includes an additional antigen tube 2 (TB2) while excluding TB7.7 from antigen tube 1 (TB1), to measure TB specific CD4+ and CD8+ T lymphocytes responses. We compared agreement between QFT-Plus and QFT-GIT among highly TB exposed goldminers in South Africa. METHODS: We enrolled HIV-negative goldminers in South Africa, aged ≥33 years with no prior history of TB disease or evidence of silicosis. Blood samples were collected for QFT-GIT and QFT-Plus. QFT-GIT was considered positive if TB1 tested positive; while QFT-Plus was positive if both or either TB1 or TB2 tested positive, as per manufacturer's recommendations. We compared the agreement between QFT-Plus and QFT-GIT using Cohen’s Kappa. To assess the specific contribution of CD8+ T-cells, we used TB2−TB1 differential values as an indirect estimate. A cut-off value was set at 0.6. Logistic regression was used to identify factors associated with having TB2-TB1>0.6 difference on QFT-Plus. RESULTS: Of 349 enrolled participants, 304 had QFT-Plus and QFT-GIT results: 205 (68%) were positive on both assays; 83 (27%) were negative on both assays while 16 (5%) had discordant results. Overall, there was 94.7% (288/304) agreement between QFT-Plus and QFT-GIT (Kappa = 0.87). 214 had positive QFT-Plus result, of whom 202 [94.4%, median interquartile range (IQR): 3.06 (1.31, 7.00)] were positive on TB1 and 205 [95.8%, median (IQR): 3.25 (1.53, 8.02)] were positive on TB2. A TB2-TB1>0.6 difference was observed in 16.4% (35/214), with some evidence of a difference by BMI; 14.9% (7/47), 9.8% (9/92) and 25.3% (19/75) for BMI of 18.5-24.9, 18.5-25 and >30 kg/m 2, respectively (P=0.03). CONCLUSION: In a population of HIV-negative goldminers, QFT-Plus showed high agreement with QFT-GIT, suggesting similar performance

    The Duration of Antigen-Stimulation Significantly Alters the Diversity of Multifunctional CD4 T Cells Measured by Intracellular Cytokine Staining

    Get PDF
    The assessment of antigen-specific T cell responses by intracellular cytokine staining (ICS) has become a routine technique in studies of vaccination and immunity. Here, we highlight how the duration of in vitro antigen pre-stimulation, combined with the cytokine accumulation period, are critical parameters of these methods. The effect of varying these parameters upon the diversity and frequency of multifunctional CD4 T cell subsets has been investigated using a murine model of TB vaccination and in cattle naturally infected with Mycobacterium bovis. We demonstrate a substantial influence of the duration of the antigen pre-stimulation period on the repertoire of the antigen-specific CD4 T cell responses. Increasing pre-stimulation from 2 to 6 hours amplified the diversity of the seven potential multifunctional CD4 T cell subsets that secreted any combination of IFN-γ, IL-2 and TNF-α. However, increasing pre-stimulation from 6 to 16 hours markedly altered the multifunctional CD4 T cell repertoire to a dominant IFN-γ+ only response. This was observed in both murine and cattle models

    Host-Directed Therapies for tackling Multi-Drug Resistant TB – learning from the Pasteur-Bechamp debates

    Get PDF
    Tuberculosis (TB) remains a global emergency causing an estimated 1.5 million deaths annually. For several decades the major focus of TB treatment has been on antibiotic development targeting Mycobacterium tuberculosis (M.tb). The lengthy TB treatment duration and poor treatment outcomes associated with multi-drug resistant TB (MDR-TB) are of major concern. The sparse new TB drug pipeline and widespread emergence of MDR-TB signal an urgent need for more innovative interventions to improve treatment outcomes. Building on the historical Pasteur-Bechamp debates on the role of the ‘microbe’ versus the ‘host internal milieu’ in disease causation, we make the case for parallel investments into host-directed therapies (HDTs). A range of potential HDTs are now available which require evaluation in randomized controlled clinical trials as adjunct therapies for shortening the duration of TB therapy and improving treatment outcomes for drug-susceptible TB and MDR-TB. Funder initiatives that may enable further research into HDTs are described

    Towards host-directed therapies for tuberculosis

    Get PDF
    The treatment of tuberculosis is based on combinations of drugs that directly target Mycobacterium tuberculosis. A new global initiative is now focusing on a complementary approach of developing adjunct host-directed therapies. Despite the availability of effective antibiotics for tuberculosis (TB) for the past half century, it remains an important global health problem; there are ~9 million active TB cases and ~1.5 million TB-induced deaths per year (see the World Health Organization (WHO) Global Tuberculosis Report in Further information). Health services around the world face major barriers to achieving optimal outcomes from current TB treatment regimens. These barriers include: the spread of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB); complex and toxic treatment regimens for MDR-TB; HIV co-infection; pharmacokinetic interactions between TB drugs and antiretroviral drugs; relapse; permanent damage to lung and other tissues; long-term functional disability; immune reconstitution inflammatory syndrome (IRIS); and co-morbidity with non-communicable diseases such as diabetes and chronic obstructive airway diseases. Another fundamental problem is the long duration of TB drug treatment (6 months for drug-sensitive TB and at least 18 months for drug-resistant TB) to achieve a cure, owing to the presence of dormant Mycobacterium tuberculosis bacilli that are phenotypically resistant to current classes of anti-TB drugs, which can only target bacterial replication. There is therefore an urgent need for new TB treatments. However, the TB drug pipeline is thin1, 2. For the past 60 years, efforts to develop new treatments have focused on compounds and regimens that target M. tuberculosis directly. Recently, however, attention has focused on investigating a range of adjunct treatment interventions known as host-directed therapies (HDTs) that instead target the host response to infection. Here, we highlight the rationale for HDTs, the current portfolio of HDTs and their mechanisms of action, and a consortium-based approach to drive forward their evaluation in clinical trials

    Monocyte metabolic transcriptional programs associate with resistance to tuberculin skin test/interferon-γ release assay conversion.

    Get PDF
    After extensive exposure to Mycobacterium tuberculosis (Mtb), most individuals acquire latent Mtb infection (LTBI) defined by a positive tuberculin skin test (TST) or interferon-γ release assay (IGRA). To identify mechanisms of resistance to Mtb infection, we compared transcriptional profiles from highly exposed contacts who resist TST/IGRA conversion (resisters, RSTRs) and controls with LTBI using RNAseq. Gene sets related to carbon metabolism and free fatty acid (FFA) transcriptional responses enriched across 2 independent cohorts suggesting RSTR and LTBI monocytes have distinct activation states. We compared intracellular Mtb replication in macrophages treated with FFAs and found that palmitic acid (PA), but not oleic acid (OA), enhanced Mtb intracellular growth. This PA activity correlated with its inhibition of proinflammatory cytokines in Mtb-infected cells. Mtb growth restriction in PA-treated macrophages was restored by activation of AMP kinase (AMPK), a central host metabolic regulator known to be inhibited by PA. Finally, we genotyped AMPK variants and found 7 SNPs in PRKAG2, which encodes the AMPK-γ subunit, that strongly associated with RSTR status. Taken together, RSTR and LTBI phenotypes are distinguished by FFA transcriptional programs and by genetic variation in a central metabolic regulator, which suggests immunometabolic pathways regulate TST/IGRA conversion

    MAO-inhibitors in Parkinson's Disease

    Get PDF
    Monoamine oxidase inhibitors (MAO-I) belong to the earliest drugs tried in Parkinson's disease (PD). They have been used with or without levodopa (L-DOPA). Non-selective MAO-I due to their side-effect/adverse reaction profile, like tranylcypromine have limited use in the treatment of depression in PD, while selective, reversible MAO-A inhibitors are recommended due to their easier clinical handling. For the treatment of akinesia and motor fluctuations selective irreversible MAO-B inhibitors selegiline and rasagiline are recommended. They are safe and well tolerated at the recommended daily doses. Their main differences are related to (1) metabolism, (2) interaction with CYP-enzymes and (3) quantitative properties at the molecular biological/genetic level. Rasagiline is more potent in clinical practise and has a hypothesis driven more favourable side effect/adverse reaction profile due to its metabolism to aminoindan. Both selegiline and rasagiline have a neuroprotective and neurorestaurative potential. A head-to head clinical trial would be of utmost interest from both the clinical outcome and a hypothesis-driven point of view. Selegiline is available as tablet and melting tablet for PD and as transdermal selegiline for depression, while rasagiline is marketed as tablet for PD. In general, the clinical use of MAO-I nowadays is underestimated. There should be more efforts to evaluate their clinical potency as antidepressants and antidementive drugs in addition to the final proof of their disease-modifying potential. In line with this are recent innovative developments of MAO-I plus inhibition of acetylcholine esterase for Alzheimer's disease as well as combined MAO-I and iron chelation for PD
    • …
    corecore