21 research outputs found

    Lack of effects of pioglitazone on cardiac function in patients with type 2 diabetes and evidence of left ventricular diastolic dysfunction: a tissue doppler imaging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thiazolidinediones, used for the treatment of patients with type 2 diabetes mellitus (DM2), are associated with an increased incidence of heart failure. We sought to investigate the effects of pioglitazone on novel echocardiographic indices of left ventricular (LV) diastolic function in DM2 patients with LV diastolic dysfunction (LVDD).</p> <p>Methods</p> <p>Eighty-eight asymptomatic DM2 patients on metformin and/or sulfonylureas, aged 64.5 ± 7.7 years, without known cardiovascular disease, with normal LV systolic function and evidence of LVDD were randomly assigned to pioglitazone 30 mg/day (n = 42) or an increase in dose of other oral agents (n = 39) for 6 months. All patients underwent transthoracic conventional and Tissue Doppler Imaging echocardiography at baseline and follow-up. The primary end-point was change in early diastolic velocity of the mitral annulus (E').</p> <p>Results</p> <p>Improvement of glycaemic control was similar in the 2 groups. A significant difference (p < 0.05) between the 2 groups was found in the treatment-induced changes in fasting insulin, the insulin resistance index HOMA, HDL cholesterol, triglycerides, diastolic blood pressure (all in favor of pioglitazone) and in body weight (increase with pioglitazone). No significant changes were observed in any echocardiographic parameter in either group and did not differ between groups (p = NS for all). E' increased non-significantly and to a similar extent in both groups (p = NS).</p> <p>Conclusions</p> <p>In asymptomatic DM2 patients with LVDD, the addition of pioglitazone to oral conventional treatment for 6 months does not induce any adverse or favorable changes in LV diastolic or systolic function despite improvements in glycaemic control, insulin sensitivity, lipid profile, and blood pressure.</p

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    FT-MIR Analysis of Water-Soluble Extracts during the Ripening of Sheep Milk Cheese with Different Phospholipid Content

    No full text
    The purpose of this work was to study the suitability of the water-soluble extracts (WSE) of semi-hard sheep milk cheese for analysis by diffuse reflectance Fourier transform mid-infrared spectroscopy (FT-MIR) and the development of classification models using discriminant analysis and based on cheese age or phospholipid content. WSE was extracted from three types of sheep milk cheeses (full-fat, reduced-fat and reduced-fat fortified with lyophilized sweet sheep buttermilk) at various stages of ripening from six to 168 days and lyophilized. The first model used 1854–1381 and 1192–760 cm−1 regions of the first-derivative spectra and successfully differentiated samples of different age, based on changes in the water-soluble products of ripening biochemical events. The second model used the phospholipid absorbance spectral regions (3012–2851, 1854–1611 and 1192–909 cm−1) to successfully discriminate cheeses of markedly different phospholipid content. Cheese WSE was found suitable for FT-MIR analysis. According to the results, a fast and simple method to monitor cheese ripening based on water-soluble substances has been developed. Additionally, the results indicated that a considerable amount of phospholipids migrates to the cheese WSE and that FT-MIR can be a useful tool for their assessment

    Study of volatile compounds in Greek pistachio (Pistacia vera L. ‘Aegina’ cultivar) oils using Soxhlet and ultrasound assisted extraction

    No full text
    Headspace solid-phase microextraction followed by gas chromatography-mass spectrometry (HS-SPME/GC-MS) represents the most used solvent-free methodology for the characterization of the complex and heterogeneous mix of volatile compounds. The present study investigates the differences in volatile profile of pistachio oils ‘Aegina’ cultivar extracted with two different techniques, ultrasound assisted extraction (UAE) and Soxhlet. Differences were observed both in the pistachio oil yield and the composition of the volatile compounds among these two groups of samples, which were significantly influenced due to the different thermal conditions. In terms of pistachio oil yield, the Soxhlet extraction technique was proven more efficient (52.5–68.2% w/w) than the UAE type (28.2–42.6% w/w). A total of 34 and 30 volatile compounds were identified for UAE and Soxhlet, respectively. The main ones associated with UAE were α-pinene, octane and decane, while the volatiles formed as a consequence of Soxhlet extraction were decane, nonanal and (E)-2-decenal. Terpenes' concentrations were found decreased in Soxhlet's samples, but hydrocarbons and aldehydes were significantly increased in these samples. Numerous studies concluded in common results. However, this article is the first to explore the influence of different extraction types on the volatile profile of the unique flavour and odor pistachio oil ‘Aegina’ cultivar

    Study of the Quality Parameters and the Antioxidant Capacity for the FTIR-Chemometric Differentiation of Pistacia Vera Oils

    No full text
    The aim of this work was to characterize the pistachio oil of the Greek variety, &ldquo;Aegina&rdquo;, evaluate its various quality indices, and investigate the potential use of FTIR as a tool to discriminate different oil qualities. For this purpose, the antioxidant capacity, the tocopherol content and the oxidation and degradation of fatty acids, as described by k, &Delta;k, R-values, and free acidity were evaluated using 45 samples from eight different areas of production and two subsequent years of harvesting. The antioxidant capacity was estimated using 2,2&prime;-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS) and 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazine (DPPH) assays, and the tocopherol content was quantified through HPLC analysis. FTIR spectra were recorded for all samples and multivariate analysis was applied. The results showed significant differences between the oil samples of different harvesting years, which were successfully discriminated by a representative FTIR spectral region based on R-value, total antioxidant capacity, and scavenging capacity, through ABTS. A similar approach could not be confirmed for the other quality parameters, such as the free acidity and the tocopherol content. This research highlighted the possibility of developing a simple, rapid, economic, and environment friendly method for the discrimination of pistachio oils according to their quality profile, through FTIR spectroscopy and multivariate analysis

    Greek Honey Authentication: Botanical Approach

    No full text
    Honey is a functional, honeybee product with a useful role in human nutrition and several health benefits. Greece is a Mediterranean region with several types of monofloral honey. Today, Greek honey has acquired an important position in national and international markets. Due to this increased industrialization and globalization, quality control is a necessity. Mislabeling constitutes one of the most notable types of fraudulence, while most consumers are looking for authentic honey. Moreover, producers and suppliers are searching for rapid and analytical methodologies to secure Greek honey in a competitive environment. In this context, we aimed to describe the classical (melissopalynological, physicochemical) and analytical (chromatographic, spectrometric, and spectroscopic) methods for the standardization of the botanical origin of Greek honey

    Greek Honey Authentication: Botanical Approach

    No full text
    Honey is a functional, honeybee product with a useful role in human nutrition and several health benefits. Greece is a Mediterranean region with several types of monofloral honey. Today, Greek honey has acquired an important position in national and international markets. Due to this increased industrialization and globalization, quality control is a necessity. Mislabeling constitutes one of the most notable types of fraudulence, while most consumers are looking for authentic honey. Moreover, producers and suppliers are searching for rapid and analytical methodologies to secure Greek honey in a competitive environment. In this context, we aimed to describe the classical (melissopalynological, physicochemical) and analytical (chromatographic, spectrometric, and spectroscopic) methods for the standardization of the botanical origin of Greek honey

    Unifloral Autumn Heather Honey from Indigenous Greek Erica manipuliflora Salisb.: SPME/GC-MS Characterization of the Volatile Fraction and Optimization of the Isolation Parameters

    No full text
    For long heather honey has been a special variety due to its unique organoleptic characteristics. This study aimed to characterize and optimize the isolation of the dominant volatile fraction of Greek autumn heather honey using solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The described approach pointed out 13 main volatile components more closely related to honey botanical origin, in terms of occurrence and relative abundance. These volatiles include phenolic compounds and norisoprenoids, with benzaldehyde, safranal and p-anisaldehyde present in higher amounts, while ethyl 4-methoxybenzoate is reported for the first time in honey. Then, an experimental design was developed based on five numeric factors and one categorical factor and evaluated the optimum conditions (temperature: 60 °C, equilibration time: 30 min extraction time: 15 min magnetic stirrer velocity: 100 rpm sample volume: 6 mL water: honey ratio: 1:3 (v/w)). Additionally, a validation test set reinforces the above methodology investigation. Honey is very complex and variable with respect to its volatile components given the high diversity of the floral source. As a result, customizing the isolation parameters for each honey is a good approach for streamlining the isolation volatile compounds. This study could provide a good basis for future recognition of monofloral autumn heather honey

    Authentication of the Botanical and Geographical Origin and Detection of Adulteration of Olive Oil Using Gas Chromatography, Infrared and Raman Spectroscopy Techniques: A Review

    No full text
    Olive oil is among the most popular supplements of the Mediterranean diet due to its high nutritional value. However, at the same time, because of economical purposes, it is also one of the products most subjected to adulteration. As a result, authenticity is an important issue of concern among authorities. Many analytical techniques, able to detect adulteration of olive oil, to identify its geographical and botanical origin and consequently guarantee its quality and authenticity, have been developed. This review paper discusses the use of infrared and Raman spectroscopy as candidate tools to examine the authenticity of olive oils. It also considers the volatile fraction as a marker to distinguish between different varieties and adulterated olive oils, using SPME combined with gas chromatography technique

    Optimized Isolation of Safranal from Saffron by Solid-Phase Microextraction (SPME) and Rotatable Central Composite Design-Response Surface Methodology (RCCD-RSM)

    No full text
    Safranal is the main aroma component of saffron stigmas. It is also a great antioxidant with known pharmacological properties and is a potent indicator for the grading and authentication of saffron. In this study, the optimum extraction conditions of safranal from saffron stigmas were investigated using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and response surface methodology (RSM). A rotatable-central composite design was applied, and a linear regression model has been used for the model building. The optimized factors were as follows: sample weight (15 mg), water volume (4 mL), exposure time in the headspace (20 min), and extraction temperature (45 &deg;C). All factors were found significant; however, extraction temperature and exposure time were the most important for the isolation of safranal. The obtained model was successfully validated with a test set of saffron samples analyzed under the optimum extraction conditions. The optimized SPME extraction conditions of safranal found in this study contribute to the efforts towards the detection of saffron authentication and adulteration
    corecore