45 research outputs found

    What are the economic costs of biological invasions? A complex topic requiring international and interdisciplinary expertise

    Get PDF
    Biological invasions can cause substantial economic losses and expenses for management, as well as harm biodiversity, ecosystem services and human well-being. A comprehensive assessment of the economic costs of invasions is a challenging but essential prerequisite for efficient and sustainable management of invasive alien species. Indeed, these costs were shown to be inherently heterogeneous and complex to determine, and substantial knowledge gaps prevent a full understanding of their nature and distribution. Hence, the development of a still-missing global, standard framework for assessing and deciphering invasion costs is essential to identify effective management approaches and optimise legislation. The recent advent of the InvaCost database – the first comprehensive and harmonised compilation of the economic costs associated with biological invasions worldwide – offers unique opportunities to investigate these complex and diverse costs at different scales. Insights provided by such a dataset are likely to be greatest when a diverse range of experience and expertise are combined. For this purpose, an international and multidisciplinary workshop was held from 12th to 15th November 2019 near Paris (France) to launch several project papers based on the data available in InvaCost. Here, we highlight how the innovative research arising from this workshop offers a major step forward in invasion science. We collectively identified five core research opportunities that InvaCost can help to address: (i) decipher how existing costs of invasions are actually distributed in human society; (ii) bridge taxonomic and geographic gaps identified in the costs currently estimated; (iii) harmonise terminology and reporting of costs through a consensual and interdisciplinary framework; (iv) develop innovative methodological approaches to deal with cost estimations and assessments; and (v) provide cost-based information and tools for applied management of invasions. Moreover, we attribute part of the success of the workshop to its consideration of diversity, equity and societal engagement, which increased research efficiency, creativity and productivity. This workshop provides a strong foundation for substantially advancing our knowledge of invasion impacts, fosters the establishment of a dynamic collaborative network on the topic of invasion economics, and highlights new key features for future scientific meetings.Fil: Diagne, Christophe. Universite Paris-Saclay;Fil: Catford, Jane A.. King's College London; Reino UnidoFil: Essl, Franz. Universidad de Viena; AustriaFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Courchamp, Franck. Universite Paris-Saclay

    Economic costs of biological invasions in Ecuador:the importance of the Galapagos Islands

    Get PDF
    Biological invasions, as a result of human intervention through trade and mobility, are the second biggest cause of biodiversity loss. The impacts of invasive alien species (IAS) on the environment are well known, however, economic impacts are poorly estimated, especially in mega-diverse countries where both economic and ecological consequences of these effects can be catastrophic. Ecuador, one of the smallest mega-diverse countries, lacks a comprehensive description of the economic costs of IAS within its territory. Here, using "InvaCost", a public database that compiles all recorded monetary costs associated with IAS from English and Non-English sources, we investigated the economic costs of biological invasions. We found that between 1983 and 2017, the reported costs associated with biological invasions ranged between US86.17million(whenconsideringonlythemostrobustdata)andUS86.17 million (when considering only the most robust data) and US626 million (when including all cost data) belonging to 37 species and 27 genera. Furthermore, 99% of the recorded cost entries were from the Galapagos Islands. From only robust data, the costliest identified taxonomic group was feral goats (Capra hircus; US20million),followedbyAedesmosquitoes(US20 million), followed by Aedes mosquitoes (US2.14 million) while organisms like plant species from the genus Rubus, a parasitic fly (Philornis downsi), black rats (Rattus rattus) and terrestrial gastropods (Achatina fulica) represented less than US2 million each. Costs of "mixed-taxa" (i.e. plants and animals) represented the highest (61% of total robust costs; US52.44 million). The most impacted activity sector was the national park authorities, which spent about US$84 million. Results from robust data also revealed that management expenditures were the major type of costs recorded in the Galapagos Islands; however, costs reported for medical losses related to Aedes mosquitoes causing dengue fever in mainland Ecuador would have ranked first if more detailed information had allowed us to categorize them as robust data. Over 70% of the IAS reported for Ecuador did not have reported costs. These results suggest that costs reported here are a massive underestimate of the actual economic toll of invasions in the country

    Modelling the damage costs of invasive alien species

    Get PDF
    The rate of biological invasions is growing unprecedentedly, threatening ecological and socioeconomic systems worldwide. Quantitative understandings of invasion temporal trajectories are essential to discern current and future economic impacts of invaders, and then to inform future management strategies. Here, we examine the temporal trends of cumulative invasion costs by developing and testing a novel mathematical model with a population dynamical approach based on logistic growth. This model characterises temporal cost developments into four curve types (I–IV), each with distinct mathematical and qualitative properties, allowing for the parameterization of maximum cumulative costs, carrying capacities and growth rates. We test our model using damage cost data for eight genera (Rattus, Aedes, Canis, Oryctolagus, Sturnus, Ceratitis, Sus and Lymantria) extracted from the InvaCost database—which is the most up-to-date and comprehensive global compilation of economic cost estimates associated with invasive alien species. We find fundamental differences in the temporal dynamics of damage costs among genera, indicating they depend on invasion duration, species ecology and impacted sectors of economic activity. The fitted cost curves indicate a lack of broadscale support for saturation between invader density and impact, including for Canis, Oryctolagus and Lymantria, whereby costs continue to increase with no sign of saturation. For other taxa, predicted saturations may arise from data availability issues resulting from an underreporting of costs in many invaded regions. Overall, this population dynamical approach can produce cost trajectories for additional existing and emerging species, and can estimate the ecological parameters governing the linkage between population dynamics and cost dynamics

    Managing biological invasions: the cost of inaction

    Get PDF
    Ecological and socioeconomic impacts from biological invasions are rapidly escalating worldwide. While effective management underpins impact mitigation, such actions are often delayed, insufficient or entirely absent. Presently, management delays emanate from a lack of monetary rationale to invest at early invasion stages, which precludes effective prevention and eradication. Here, we provide such rationale by developing a conceptual model to quantify the cost of inaction, i.e., the additional expenditure due to delayed management, under varying time delays and management efficiencies. Further, we apply the model to management and damage cost data from a relatively data-rich genus (Aedes mosquitoes). Our model demonstrates that rapid management interventions following invasion drastically minimise costs. We also identify key points in time that differentiate among scenarios of timely, delayed and severely delayed management intervention. Any management action during the severely delayed phase results in substantial losses (>50% of the potential maximum loss). For Aedes spp., we estimate that the existing management delay of 55 years led to an additional total cost of approximately 4.57billion(14 4.57 billion (14% of the maximum cost), compared to a scenario with management action only seven years prior (< 1% of the maximum cost). Moreover, we estimate that in the absence of management action, long-term losses would have accumulated to US 32.31 billion, or more than seven times the observed inaction cost. These results highlight the need for more timely management of invasive alien species—either pre-invasion, or as soon as possible after detection—by demonstrating how early investments rapidly reduce long-term economic impacts

    Economic costs of biological invasions in the United Kingdom

    Get PDF
    Although the high costs of invasion are frequently cited and are a key motivation for environmental management and policy, synthesised data on invasion costs are scarce. Here, we quantify and examine the monetary costs of biological invasions in the United Kingdom (UK) using a global synthesis of reported invasion costs. Invasive alien species have cost the UK economy between US6.9billionand6.9 billion and 17.6 billion (£5.4 – £13.7 billion) in reported losses and expenses since 1976. Most costs were reported for the entire UK or Great Britain (97%); country-scale cost reporting for the UK's four constituent countries was scarce. Reports of animal invasions were the costliest (4.7billion),thenplant(4.7 billion), then plant (1.3 billion) and fungal (206.7million)invasions.Reporteddamagecosts(i.e.excludingmanagementcosts)werehigherinterrestrial(206.7 million) invasions. Reported damage costs (i.e. excluding management costs) were higher in terrestrial (4.8 billion) than aquatic or semi-aquatic environments (29.8million),andprimarilyimpactedagriculture(29.8 million), and primarily impacted agriculture (4.2 billion). Invaders with earlier introduction years accrued significantly higher total invasion costs. Invasion costs have been increasing rapidly since 1976, and have cost the UK economy $157.1 million (£122.1 million) per annum, on average. Published information on specific economic costs included only 42 of 520 invaders reported in the UK and was generally available only for the most intensively studied taxa, with just four species contributing 90% of species-specific costs. Given that many of the invasive species lacking cost data are actively managed and have well-recognised impacts, this suggests that cost information is incomplete and that totals presented here are vast underestimates owing to knowledge gaps. Financial expenditure on managing invasions is a fraction (37%) of the costs incurred through damage from invaders; greater investments in UK invasive species research and management are, therefore, urgently required

    Biological invasion costs reveal insufficient proactive management worldwide

    Get PDF
    Funding Information: The authors thank the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project and the work on InvaCost database development. The present work was conducted in the frame of InvaCost workshop carried in November 2019 (Paris, France) and funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenario project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. RNC was funded through a Leverhulme Early Career Fellowship (ECF-2021-001) from the Leverhulme Trust and a Humboldt Postdoctoral Fellowship from the Alexander von Humboldt Foundation. DAA is funded by the Kuwait Foundation for the Advancement of Sciences (KFAS) (PR1914SM-01) and the Gulf University for Science and Technology (GUST) internal seed funds (187092 & 234597). CA was funded by the French National Centre for Scientific Research (CNRS). TWB acknowledges funding from the European Union's Horizon 2020 research and innovation programme Marie Skodowska-Curie fellowship (Grant No. 747120). FE was funded through the 2017?2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, and with the funding organisation Austrian Science Foundation FWF (grant I 4011-B32). NK is funded by the basic project of Sukachev Institute of Forest SB RAS, Russia (Project No. 0287-2021-0011; data mining) and the Russian Science Foundation (project No. 21-16-00050; data analysis).Peer reviewedPublisher PD

    Global economic costs of aquatic invasive alien species

    Get PDF
    Much research effort has been invested in understanding ecological impacts of invasive alien species (IAS) across ecosystems and taxonomic groups, but empirical studies about economic effects lack synthesis. Using a comprehensive global database, we determine patterns and trends in economic costs of aquatic IAS by examining: (i) the distribution of these costs across taxa, geographic regions and cost types; (ii) the temporal dynamics of global costs; and (iii) knowledge gaps, especially compared to terrestrial IAS. Based on the costs recorded from the existing literature, the global cost of aquatic IAS conservatively summed to US345billion,withthemajorityattributedtoinvertebrates(62345 billion, with the majority attributed to invertebrates (62%), followed by vertebrates (28%), then plants (6%). The largest costs were reported in North America (48%) and Asia (13%), and were principally a result of resource damages (74%); only 6% of recorded costs were from management. The magnitude and number of reported costs were highest in the United States of America and for semi-aquatic taxa. Many countries and known aquatic alien species had no reported costs, especially in Africa and Asia. Accordingly, a network analysis revealed limited connectivity among countries, indicating disparate cost reporting. Aquatic IAS costs have increased in recent decades by several orders of magnitude, reaching at least US23 billion in 2020. Costs are likely considerably underrepresented compared to terrestrial IAS; only 5% of reported costs were from aquatic species, despite 26% of known invaders being aquatic. Additionally, only 1% of aquatic invasion costs were from marine species. Costs of aquatic IAS are thus substantial, but likely underreported. Costs have increased over time and are expected to continue rising with future invasions. We urge increased and improved cost reporting by managers, practitioners and researchers to reduce knowledge gaps. Few costs are proactive investments; increased management spending is urgently needed to prevent and limit current and future aquatic IAS damages. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Non-English languages enrich scientific knowledge : The example of economic costs of biological invasions

    Get PDF
    We contend that the exclusive focus on the English language in scientific researchmight hinder effective communication between scientists and practitioners or policymakerswhose mother tongue is non-English. This barrier in scientific knowledge and data transfer likely leads to significant knowledge gaps and may create biases when providing global patterns in many fields of science. To demonstrate this, we compiled data on the global economic costs of invasive alien species reported in 15 non-English languages. We compared it with equivalent data from English documents (i.e., the InvaCost database, the most up-to-date repository of invasion costs globally). The comparison of both databases (similar to 7500 entries in total) revealed that non-English sources: (i) capture a greater amount of data than English sources alone (2500 vs. 2396 cost entries respectively); (ii) add 249 invasive species and 15 countries to those reported by English literature, and (iii) increase the global cost estimate of invasions by 16.6% (i.e., US$ 214 billion added to 1.288 trillion estimated fromthe English database). Additionally, 2712 cost entries - not directly comparable to the English database - were directly obtained frompractitioners, revealing the value of communication between scientists and practitioners. Moreover, we demonstrated how gaps caused by overlooking non-English data resulted in significant biases in the distribution of costs across space, taxonomic groups, types of cost, and impacted sectors. Specifically, costs from Europe, at the local scale, and particularly pertaining to management, were largely under-represented in the English database. Thus, combining scientific data from English and non-English sources proves fundamental and enhances data completeness. Considering non-English sources helps alleviate biases in understanding invasion costs at a global scale. Finally, it also holds strong potential for improving management performance, coordination among experts (scientists and practitioners), and collaborative actions across countries. Note: non-English versions of the abstract and figures are provided in Appendix S5 in 12 languages. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/ by/4.0/).Peer reviewe

    The economic costs, management and regulation of biological invasions in the Nordic countries

    Get PDF
    A collective understanding of economic impacts and in particular of monetary costs of biological invasions is lacking for the Nordic region. This paper synthesizes findings from the literature on costs of invasions in the Nordic countries together with expert elicitation. The analysis of cost data has been made possible through the InvaCost database, a globally open repository of monetary costs that allows for the use of temporal, spatial, and taxonomic descriptors facilitating a better understanding of how costs are distributed. The total reported costs of invasive species across the Nordic countries were estimated at 8.35billion(in2017US8.35 billion (in 2017 US values) with damage costs significantly outweighing management costs. Norway incurred the highest costs (3.23billion),followedbyDenmark(3.23 billion), followed by Denmark (2.20 billion), Sweden (1.45billion),Finland(1.45 billion), Finland (1.11 billion) and Iceland ($25.45 million). Costs from invasions in the Nordics appear to be largely underestimated. We conclude by highlighting such knowledge gaps, including gaps in policies and regulation stemming from expert judgment as well as avenues for an improved understanding of invasion costs and needs for future research
    corecore