94 research outputs found

    Weight History, Smoking, Physical Activity and Breast Cancer Risk among French-Canadian Women Non-Carriers of More Frequent BRCA1/2 Mutations

    Get PDF
    Several lifestyle factors play a significant role in determining an individual's risk of breast cancer. Many of them could be modified to protect against the malignancy. A nested case-control study was conducted to examine the association between selected lifestyle factors and non-BRCA-related breast cancer risk among French-Canadian women. Some 280 women with breast cancer and who were nongene carriers of mutated BRCA gene were recruited as cases. Another 280 women, without any cancer and nongene carriers of mutated BRCA gene served as controls. A tested lifestyle questionnaire was interviewer administered to incident cases to obtain information on weight history, smoking, physical activity, and other lifestyle risk factors. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated in logistic regression models. Comparing cases to controls, breast cancer risk was higher among subjects who reached their maximum body mass index (BMI) at an older age (>50 years) (OR = 2.83; 95% CI: 2.34–2.91). A positive association was noted between breast cancer risk and weight gain of >34 lbs compared to weight gain of ≤15 lbs, since the age of 20 (OR = 1.68; 95% CI: 1.10–2.58). Weight gain of >24 lbs compared to weight gain of ≤9 lbs, since the age of 30 also resulted in the same relationship (OR = 1.96; 95% CI: 1.46–3.06). Similarly, since the age of 40, weight gain of >12 lbs compared to weight gain of ≤1 lb was associated with increased breast cancer risk (OR = 1.91; 95% CI: 1.53–2.66). Women who smoked >9 pack-years of cigarettes had a 59% higher breast cancer risk (P = .05). Subjects who engaged in >24.8 metabolic-equivalent- (MET-) hours per week compared to ≤10.7 MET-hours per week of moderate physical activity had a 52% (P = .01) decreased risk and total physical activity between 16.2 and 33.2 MET-hours per week compared to ≤16.2 MET-hours per week, resulted in a 43% (P = .05) lower risk of breast cancer. In conclusion, weight history did affect breast cancer risk. Moreover, smoking appeared to raise the risk, whereas moderate physical activity had a protective effect

    Non-Carriers of More Frequent BRCA1/2 Mutations

    Get PDF
    Recommended by Paolo Boffetta Several lifestyle factors play a significant role in determining an individual's risk of breast cancer. Many of them could be modified to protect against the malignancy. A nested case-control study was conducted to examine the association between selected lifestyle factors and non-BRCA-related breast cancer risk among French-Canadian women. Some 280 women with breast cancer and who were nongene carriers of mutated BRCA gene were recruited as cases. Another 280 women, without any cancer and nongene carriers of mutated BRCA gene served as controls. A tested lifestyle questionnaire was interviewer administered to incident cases to obtain information on weight history, smoking, physical activity, and other lifestyle risk factors. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated in logistic regression models. Comparing cases to controls, breast cancer risk was higher among subjects who reached their maximum body mass index (BMI) at an older age (>50 years) (OR = 2.83; 95% CI: 2.34-2.91). A positive association was noted between breast cancer risk and weight gain of >34 lbs compared to weight gain of ≤15 lbs, since the age of 20 (OR = 1.68; 95% CI: 1.10-2.58). Weight gain of >24 lbs compared to weight gain of ≤9 lbs, since the age of 30 also resulted in the same relationship (OR = 1.96; 95% CI: 1.46-3.06). Similarly, since the age of 40, weight gain of >12 lbs compared to weight gain of ≤1 lb was associated with increased breast cancer risk (OR = 1.91; 95% CI: 1.53-2.66). Women who smoked >9 pack-years of cigarettes had a 59% higher breast cancer risk (P = .05). Subjects who engaged in >24.8 metabolic-equivalent-(MET-) hours per week compared to ≤10.7 MET-hours per week of moderate physical activity had a 52% (P = .01) decreased risk and total physical activity between 16.2 and 33.2 MET-hours per week compared to ≤16.2 MET-hours per week, resulted in a 43% (P = .05) lower risk of breast cancer. In conclusion, weight history did affect breast cancer risk. Moreover, smoking appeared to raise the risk, whereas moderate physical activity had a protective effect

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Hormone Therapy and the Risk of Breast Cancer in BRCA1 Mutation Carriers

    Get PDF
    Background: Hormone therapy (HT) is commonly given to women to alleviate the climacteric symptoms associated with menopause. There is concern that this treatment may increase the risk of breast cancer. The potential association of HT and breast cancer risk is of particular interest to women who carry a mutation in BRCA1 because they face a high lifetime risk of breast cancer and because many of these women take HT after undergoing prophylactic surgical oophorectomy at a young age. Methods: We conducted a matched case-control study of 472 postmenopausal women with a BRCA1 mutation to examine whether or not the use of HT is associated with subsequent risk of breast cancer. Breast cancer case patients and control subjects were matched with respect to age, age at menopause, and type of menopause (surgical or natural). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated with conditional logistic regression. Statistical tests were two-sided. Results: In this group of BRCA1 mutation carriers, the adjusted OR for breast cancer associated with ever use of HT compared with never use was 0.58 (95% CI = 0.35 to 0.96; P =. 03). In analyses by type of HT, an inverse association with breast cancer risk was observed with use of estrogen only (OR = 0.51, 95% CI = 0.27 to 0.98; P =. 04); the association with use of estrogen plus progesterone was not statistically significant (OR = 0.66, 95% CI = 0.34 to 1.27; P =. 21). Conclusion: Among postmenopausal women with a BRCA1 mutation, HT use was not associated with increased risk of breast cancer; indeed, in this population, it was associated with a decreased risk

    The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations

    Get PDF
    International audienceBACKGROUND:Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers.METHODS:Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort.RESULTS:For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc] = 0.99, 95% confidence interval [CI] = 0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRc = 0.79, 95% CI = 0.69 to 0.91; HRc = 0.70, 95% CI = 0.59 to 0.82; HRc = 0.50, 95% CI = 0.40 to 0.63, for 2, 3, and ≥4 FTPs, respectively, P trend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort P trend = .0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp] = 1.69, 95% CI = 1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRc = 1.33, 95% CI = 1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRc = 0.72, 95% CI = 0.54 to 0.98).CONCLUSIONS:These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers

    Assessing associations between the AURKAHMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers

    Get PDF
    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood appr

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe
    corecore