167 research outputs found

    Recognition of a translocation motif in the regulator HpaA from Xanthomonas euvesicatoria is controlled by the type III secretion chaperone HpaB

    Get PDF
    The Gram-negative plant-pathogenic bacterium Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato plants. Pathogenicity of X. euvesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells and is associated with an extracellular pilus and a translocon in the plant plasma membrane. Effector protein translocation is activated by the cytoplasmic T3S chaperone HpaB which presumably targets effectors to the T3S system. We previously reported that HpaB is controlled by the translocated regulator HpaA which binds to and inactivates HpaB during the assembly of the T3S system. In the present study, we show that translocation of HpaA depends on the T3S substrate specificity switch protein HpaC and likely occurs after pilus and translocon assembly. Translocation of HpaA requires the presence of a translocation motif (TrM) in the N-terminal region. The TrM consists of an arginine-and proline-rich amino acid sequence and is also essential for the in vivo function of HpaA. Mutation of the TrM allowed the translocation of HpaA in hpaB mutant strains but not in the wild-type strain, suggesting that the recognition of the TrM depends on HpaB. Strikingly, the contribution of HpaB to the TrM-dependent translocation of HpaA was independent of the presence of the C-terminal HpaB-binding site in HpaA. We propose that HpaB generates a recognition site for the TrM at the T3S system and thus restricts the access to the secretion channel to effector proteins. Possible docking sites for HpaA at the T3S system were identified by in vivo and in vitro interaction studies and include the ATPase HrcN and components of the predicted cytoplasmic sorting platform of the T3S system. Notably, the TrM interfered with the efficient interaction of HpaA with several T3S system components, suggesting that it prevents premature binding of HpaA. Taken together, our data highlight a yet unknown contribution of the TrM and HpaB to substrate recognition and suggest that the TrM increases the binding specificity between HpaA and T3S system components

    Stress hormones: cortisol, adrenocorticotropic hormone and oxytocin in the context of social violations in children with autism spectrum disorders

    Get PDF
    Autism spectrum disorders (ASD) refer to heterogeneous disorders of neurodevelopment, the main symptom of which is social insufficiency. Aim: to conduct a one-stage assessment of the relationship between key hormones in the regulation of social and stress responses: adrenocorticotropic hormone (ACTH), cortisol, oxytocin, in children with ASD in the context of severe social insufficiency. Materials and methods. A total of 44 children (37 boys and 7 girls) aged 3 to 12 years with a diagnosis of ASD were examined, which were divided into groups: with preserved social contact / lack of it. The concentrations of hormones were evaluated in blood plasma by the method of ELISA. Results. ACTH and cortisol demonstrate interdependent relationships without the involvement of oxytocin in children with ASD, while maintaining their social contact. In children with ASD with symptoms of social insufficiency, there are no correlations between the studied neurohormones. The conclusion. The data obtained suggest that the processes of disorganization / destruction of neuroanatomical and physiological connections between the systems of oxytocin and the hypothalamic-pituitary-adrenal axis (HPA-axis) and (or) the hypothalamic-neurohypophysis system and the HPA-axis

    Structural characterization of the thermostable <i>Bradyrhizobium japonicum</i> D-sorbitol dehydrogenase

    Get PDF
    Bradyrhizobium japonicum sorbitol dehydrogenase is NADH-dependent and is active at elevated temperatures. The best substrate is d-glucitol (a synonym for d-sorbitol), although l-glucitol is also accepted, giving it particular potential in industrial applications. Crystallization led to a hexagonal crystal form, with crystals diffracting to 2.9 Å resolution. In attempts to phase the data, a molecular-replacement solution based upon PDB entry 4nbu (33% identical in sequence to the target) was found. The solution contained one molecule in the asymmetric unit, but a tetramer similar to that found in other short-chain dehydrogenases, including the search model, could be reconstructed by applying crystallographic symmetry operations. The active site contains electron density consistent with d-glucitol and phosphate, but there was not clear evidence for the binding of NADH. In a search for the features that determine the thermostability of the enzyme, the T (m) for the orthologue from Rhodobacter sphaeroides, for which the structure was already known, was also determined, and this enzyme proved to be considerably less thermostable. A continuous β-sheet is formed between two monomers in the tetramer of the B. japonicum enzyme, a feature not generally shared by short-chain dehydrogenases, and which may contribute to thermostability, as may an increased Pro/Gly ratio

    A new insight into the zinc-dependent DNA-cleavage by the colicin E7 nuclease:a crystallographic and computational study

    Get PDF
    The crystal structure of a colicin E7 metallonuclease mutant complemented by QM/MM calculations suggests an alternative catalytic mechanism of Zn2+-containing HNH nucleases.</p

    The SpinBus Architecture: Scaling Spin Qubits with Electron Shuttling

    Full text link
    Quantum processor architectures must enable scaling to large qubit numbers while providing two-dimensional qubit connectivity and exquisite operation fidelities. For microwave-controlled semiconductor spin qubits, dense arrays have made considerable progress, but are still limited in size by wiring fan-out and exhibit significant crosstalk between qubits. To overcome these limitations, we introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence. Device simulations for all relevant operations in the Si/SiGe platform validate the feasibility with established semiconductor patterning technology and operation fidelities exceeding 99.9 %. Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits. Building on the theoretical feasibility of high-fidelity spin-coherent electron shuttling as key enabling factor, the SpinBus architecture may be the basis for a spin-based quantum processor that meets the scalability requirements for practical quantum computing.Comment: 15 pages, 9 figure

    Biomechanical effects of rocker shoes on plantar aponeurosis strain in patients with plantar fasciitis and healthy controls

    Get PDF
    Plantar fasciitis is a frequently occurring overuse injury of the foot. Shoes with a stiff rocker profile are a commonly prescribed treatment modality used to alleviate complaints associated with plantar fasciitis. In rocker shoes the apex position was moved proximally as compared to normal shoes, limiting the progression of the ground reaction forces (GRF) and peak plantarflexion moments during gait. A stiff sole minimizes dorsiflexion of the toes. The aim of this study was to investigate whether the biomechanical effects of rocker shoes lead to minimization of plantar aponeurosis (PA) strain during gait in patients with plantar fasciitis and in healthy young adults. 8 patients with plantar fasciitis (1 male, 7 females; mean age 55.0 ± 8.4 years) and 8 healthy young adults (8 females; mean age 24.1 ± 1.6 years) participated in the study. Each participant walked for 1 minute on an instrumented treadmill while wearing consecutively in random order shoes with a normal apex position (61.2 ± 2.8% apex) with flexible insole (FN), normal apex position with stiff insole (SN), proximal apex position (56.1 ± 2.6% apex) with flexible insole (FR) and proximal apex position with stiff insole (SR). Marker position data of the foot and lower leg and GRF were recorded. An OpenSim foot model was used to compute the change in PA length based on changes in foot segment positions during gait. The changes in PA length due to increases in Achilles tendon forces were computed based on previous data of a cadaver study. PA strain computed from both methods was not statistically different between shoe conditions. Peak Achilles tendon force, peak first metatarsophalangeal (MTP1) joint angle and peak plantarflexion moment were significantly lower when walking with the rocker shoe with a proximal apex position and a stiff insole for all subjects (p<.05). Changes in Achilles tendon forces during gait accounted for 65 ± 2% of the total PA strain. Rocker shoes with a stiff insole reduce peak dorsiflexion angles of the toes and plantar flexion moments, but not PA strain because the effects of a proximal apex position and stiff insole do not occur at the same time, but independently affect PA strain at 80-90% and 90-100% of the stance phase. Rocker shoes with an apex position of ~56% are insufficient to significantly reduce peak PA strain values in patients with plantar fasciitis and healthy young adults

    Five-year results of lumbar disc prostheses in the SWISSspine registry

    Get PDF
    Purpose: The Swiss Federal Office of Public Health demanded a nationwide HTA registry for lumbar total disc arthroplasty (TDA), to decide about its reimbursement. The goal of the SWISS spine registry is to generate evidence about the safety and efficiency of lumbar TDA. Methods: Two hundred forty-eight cases treated between 3-2005 and 6-2006, who were eligible for the 5-year follow-up were included in the study. Follow-up rates for 3-6months, 1, 2 and 5years were 85.9, 77.0, 44.0 and 51.2%, respectively. Outcome measures were back and leg pain, medication consumption, quality of life, intraoperative and postoperative complication and revision rates. Additionally, segmental mobility, ossification, adjacent and distant segment degeneration were analysed at the 5-year follow-up. Results: There was a significant, clinically relevant and lasting reduction of back (preop/postop 73/29 VAS points) and leg pain (preop/postop VAS 55/22) and a consequently decreased analgesics consumption and quality of life improvement (preop/postop 0.30/0.76 EQ-5D score points) until 5years after surgery. The rates for intraoperative and early postoperative complications were 4.4 and 3.2%, respectively. The overall complication rate during five postoperative years was 23.4%, and the adjacent segment degeneration rate was 10.7%. In 4.4 % of patients, a revision surgery was performed. Cumulative survivorship probability for a revision/re-intervention-free 5-year postoperative course was 90.4%. At the 5-year follow-up, the average range of motion of the mobile segments (86.8%) was 9.7°. In 43.9% of patients, osteophytes at least potentially affecting the range of motion were seen. Conclusions: Lumbar TDA appeared as efficient in long-term pain alleviation, consequent reduction of pain medication consumption and improvement of quality of life. The procedure also appeared sufficiently safe, but surgeons have to be aware of a list of potential adverse events. The outcome is stable over the 5-year postoperative period. The vast majority of treated segments remained mobile after 5years, although almost half of patients showed osteophytes

    Antigen-Displaying Lipid-Enveloped PLGA Nanoparticles as Delivery Agents for a Plasmodium vivax Malaria Vaccine

    Get PDF
    The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) “enveloped” by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.United States. Dept. of Defense (contract W911NF-07-D-0004)Ragon Institute of MGH, MIT and Harvar

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Local Application of BMP-2 Specific Plasmids in Fibrin Glue does not Promote Implant Fixation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>BMP-2 is known to accelerate fracture healing and might also enhance osseointegration and implant fixation. Application of recombinant BMP-2 has a time-limited effect. Therefore, a gene transfer approach with a steady production of BMP-2 appears to be attractive. The aim of this study was to examine the effect of locally applied BMP-2 plasmids on the bone-implant integration in a non-weight bearing rabbit tibia model using a comparatively new non-viral copolymer-protected gene vector (COPROG).</p> <p>Methods</p> <p>Sixty rabbits were divided into 4 groups. All of them received nailing of both tibiae. The verum group had the nails inserted with the COPROG vector and BMP-2 plasmids using fibrin glue as a carrier. Controls were a group with fibrin glue only and a blank group. After 28 and 56 days, these three groups were sacrificed and one tibia was randomly chosen for biomechanical testing, while the other tibia underwent histomorphometrical examination. In a fourth group, a reporter-gene was incorporated in the fibrin glue instead of the BMP-2 formula to prove that transfection was successful.</p> <p>Results</p> <p>Implant fixation strength was significantly lower after 28 and 56 days in the verum group. Histomorphometry supported the findings after 28 days, showing less bone-implant contact.</p> <p>In the fourth group, successful transfection could be confirmed by detection of the reporter-gene in 20 of 22 tibiae. But, also systemic reporter-gene expression was found in heterotopic locations, showing an undesired spreading of the locally applied gene formula.</p> <p>Conclusion</p> <p>Our results underline the transfecting capability of this vector and support the idea that BMP-2 might diminish osseointegration. Further studies are necessary to specify the exact mechanisms and the systemic effects.</p
    corecore