708 research outputs found

    Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential

    Get PDF
    An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets

    Transiting Exoplanets with JWST

    Full text link
    The era of exoplanet characterization is upon us. For a subset of exoplanets -- the transiting planets -- physical properties can be measured, including mass, radius, and atmosphere characteristics. Indeed, measuring the atmospheres of a further subset of transiting planets, the hot Jupiters, is now routine with the Spitzer Space Telescope. The James Webb Space Telescope (JWST) will continue Spitzer's legacy with its large mirror size and precise thermal stability. JWST is poised for the significant achievement of identifying habitable planets around bright M through G stars--rocky planets lacking extensive gas envelopes, with water vapor and signs of chemical disequilibrium in their atmospheres. Favorable transiting planet systems, are, however, anticipated to be rare and their atmosphere observations will require tens to hundreds of hours of JWST time per planet. We review what is known about the physical characteristics of transiting planets, summarize lessons learned from Spitzer high-contrast exoplanet measurements, and give several examples of potential JWST observations.Comment: 22 pages, 11 figures. In press in "Astrophysics in the Next Decade: JWST and Concurrent Facilities, Astrophysics & Space Science Library, Thronson, H. A., Tielens, A., Stiavelli, M., eds., Springer: Dordrecht (2008)." The original publication will be available at http://www.springerlink.co

    Experimental feasibility of measuring the gravitational redshift of light using dispersion in optical fibers

    Full text link
    This paper describes a new class of experiments that use dispersion in optical fibers to convert the gravitational frequency shift of light into a measurable phase shift or time delay. Two conceptual models are explored. In the first model, long counter-propagating pulses are used in a vertical fiber optic Sagnac interferometer. The second model uses optical solitons in vertically separated fiber optic storage rings. We discuss the feasibility of using such an instrument to make a high precision measurement of the gravitational frequency shift of light.Comment: 11 pages, 12 figure

    Recent Advances in Modeling Stellar Interiors

    Full text link
    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: 1) updates to input physics of stellar models; 2) progress in two and three-dimensional evolution and hydrodynamic models; 3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid gamma Dor/delta Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as eta Car and P Cyg, and the solar abundance problem.Comment: Proceedings for invited talk at conference High Energy Density Laboratory Astrophysics 2010, Caltech, March 2010, submitted for special issue of Astrophysics and Space Science; 7 pages; 5 figure

    Black hole solutions in F(R) gravity with conformal anomaly

    Full text link
    In this paper, we consider F(R)=R+f(R)F(R)=R+f(R) theory instead of Einstein gravity with conformal anomaly and look for its analytical solutions. Depending on the free parameters, one may obtain both uncharged and charged solutions for some classes of F(R)F(R) models. Calculation of Kretschmann scalar shows that there is a singularity located at r=0r=0, which the geometry of uncharged (charged) solution is corresponding to the Schwarzschild (Reissner-Nordstr\"om) singularity. Further, we discuss the viability of our models in details. We show that these models can be stable depending on their parameters and in different epoches of the universe.Comment: 12 pages, one figur

    Systematic evaluation and validation of reference and library selection methods for deconvolution of cord blood DNA methylation data

    Get PDF
    Background: Umbilical cord blood (UCB) is commonly used in epigenome-wide association studies of prenatal exposures. Accounting for cell type composition is critical in such studies as it reduces confounding due to the cell specificity of DNA methylation (DNAm). In the absence of cell sorting information, statistical methods can be applied to deconvolve heterogeneous cell mixtures. Among these methods, reference-based approaches leverage age-appropriate cell-specific DNAm profiles to estimate cellular composition. In UCB, four reference datasets comprising DNAm signatures profiled in purified cell populations have been published using the Illumina 450 K and EPIC arrays. These datasets are biologically and technically different, and currently, there is no consensus on how to best apply them. Here, we systematically evaluate and compare these datasets and provide recommendations for reference-based UCB deconvolution. Results: We first evaluated the four reference datasets to ascertain both the purity of the samples and the potential cell cross-contamination. We filtered samples and combined datasets to obtain a joint UCB reference. We selected deconvolution libraries using two different approaches: automatic selection using the top differentially methylated probes from the function pickCompProbes in minfi and a standardized library selected using the IDOL (Identifying Optimal Libraries) iterative algorithm. We compared the performance of each reference separately and in combination, using the two approaches for reference library selection, and validated the results in an independent cohort (Generation R Study, n = 191) with matched Fluorescence-Activated Cell Sorting measured cell counts. Strict filtering and combination of the references significantly improved the accuracy and efficiency of cell type estimates. Ultimately, the IDOL library outperformed the library from the automatic selection method implemented in pickCompProbes. Conclusion: These results have important implications for epigenetic studies in UCB as implementing this method will optimally reduce confounding due to cellular heterogeneity. This work provides guidelines for future referencebased UCB deconvolution and establishes a framework for combining reference datasets in other tissues

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
    corecore