71 research outputs found
Effects of rehydration nutrients on H2S metabolism and formation of volatile sulfur compounds by the wine yeast VL3
In winemaking, nutrient supplementation is a common practice for optimising fermentation and producing quality wine. Nutritionally suboptimal grape juices are often enriched with nutrients in order to manipulate the production of yeast aroma compounds. Nutrients are also added to active dry yeast (ADY) rehydration media to enhance subsequent fermentation performance. In this study we demonstrate that nutrient supplementation at rehydration also has a significant effect on the formation of volatile sulfur compounds during wine fermentations. The concentration of the 'fruity' aroma compounds, the polyfunctional thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), was increased while the concentration of the 'rotten egg' aroma compound, hydrogen sulfide (H2S), was decreased. Nutrient supplementation of the rehydration media also changed the kinetics of H2S production during fermentation by advancing onset of H2S production. Microarray analysis revealed that this was not due to expression changes within the sulfate assimilation pathway, which is known to be a major contributor to H2S production. To gain insight into possible mechanisms responsible for this effect, a component of the rehydration nutrient mix, the tri-peptide glutathione (GSH) was added at rehydration and studied for its subsequent effects on H2S formation. GSH was found to be taken up during rehydration and to act as a source for H2S during the following fermentation. These findings represent a potential approach for managing sulfur aroma production through the use of rehydration nutrients
Insights into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variations in ploidy and nutrient utilisation potential amongst wine isolates
The yeast Dekkera bruxellensis is a major contaminant of industrial fermentations, such as those used for the production of biofuel and wine, where it outlasts and, under some conditions, outcompetes the major industrial yeast Saccharomyces cerevisiae. In order to investigate the level of inter-strain variation that is present within this economically important species, the genomes of four diverse D. bruxellensis isolates were compared. While each of the four strains was shown to contain a core diploid genome, which is clearly sufficient for survival, two of the four isolates have a third haploid complement of chromosomes. The sequences of these additional haploid genomes were both highly divergent from those comprising the diploid core and divergent between the two triploid strains. Similar to examples in the Saccharomyces spp. clade, where some allotriploids have arisen on the basis of enhanced ability to survive a range of environmental conditions, it is likely these strains are products of two independent hybridisation events that may have involved multiple species or distinct sub-species of Dekkera. Interestingly these triploid strains represent the vast majority (92%) of isolates from across the Australian wine industry, suggesting that the additional set of chromosomes may confer a selective advantage in winery environments that has resulted in these hybrid strains all-but replacing their diploid counterparts in Australian winery settings. In addition to the apparent inter-specific hybridisation events, chromosomal aberrations such as strain-specific insertions and deletions and loss-of-heterozygosity by gene conversion were also commonplace. While these events are likely to have affected many phenotypes across these strains, we have been able to link a specific deletion to the inability to utilise nitrate by some strains of D. bruxellensis, a phenotype that may have direct impacts in the ability for these strains to compete with S. cerevisiae.Anthony R. Borneman, Ryan Zeppel, Paul J. Chambers, Chris D. Curti
De-Novo Assembly and Analysis of the Heterozygous Triploid Genome of the Wine Spoilage Yeast Dekkera bruxellensis AWRI1499
Despite its industrial importance, the yeast species Dekkera (Brettanomyces) bruxellensis has remained poorly understood at the genetic level. In this study we describe whole genome sequencing and analysis for a prevalent wine spoilage strain, AWRI1499. The 12.7 Mb assembly, consisting of 324 contigs in 99 scaffolds (super-contigs) at 26-fold coverage, exhibits a relatively high density of single nucleotide polymorphisms (SNPs). Haplotype sampling for 1.2% of open reading frames suggested that the D. bruxellensis AWRI1499 genome is comprised of a moderately heterozygous diploid genome, in combination with a divergent haploid genome. Gene content analysis revealed enrichment in membrane proteins, particularly transporters, along with oxidoreductase enzymes. Availability of this assembly and annotation provides a resource for further investigation of genomic organization in this species, and functional characterization of genes that may confer important phenotypic traits
Crop Updates 2005 - Cereals
This session covers thirty six papers from different authors:
WHEAT AGRONOMY
1. Optimum sowing time of new wheat varieties in Western Australia, Darshan Sharma, Brenda Shackley, Mohammad Amjad, Christine M. Zaicou-Kunesch and Wal Anderson, Department of Agriculture
2. Wheat varieties updated in ‘Flowering Calculator’: A model predicting flowering time, B. Shackley, D. Tennant, D. Sharma and C.M. Zaicou-Kunesch, Department of Agriculture
3. Plant populations for wheat varieties, Christine M. Zaicou-Kunesch, Wal Anderson, Darshan Sharma, Brenda Shackley and Mohammad Amjad, Department of Agriculture
4. New wheat cultivars response to fertiliser nitrogen in four major agricultural regions of Western Australia, Mohammad Amjad, Wal Anderson, Brenda Shackley, Darshan Sharma and Christine Zaicou-Kunesch, Department of Agriculture
5. Agronomic package for EGA Eagle Rock, Steve Penny, Department of Agriculture
6. Field evaluation of eastern and western wheats in large-scale farmer’s trials, Mohammad Amjad, Ben Curtis and Veronika Reck, Department of Agriculture
7. New wheat varieties for a changing environment, Richard Richards, CSIRO Plant Industry; Canberra
8. Farmers can profitably minimise exposure to frost! Garren Knell, Steve Curtin and David Sermon, ConsultAg
9. National Variety Trials, Alan Bedggood, Australian Crops Accreditation System; Horsham
10. Preharvest-sprouting tolerance of wheat in the field, T.B. Biddulph1, T.L. Setter2, J.A. Plummer1 and D.J. Mares3; 1Plant Biology; FNAS, University of Western Australia; 2Department of Agriculture, 3School of Agriculture and Wine, University of Adelaide
11. Waterlogging induces high concentration of Mn and Al in wheat genotypes in acidic soils, H. Khabaz-Saberi, T. Setter, I. Waters and G. McDonald, Department of Agriculture
12. Agronomic responses of new wheat varieties in the Northern Agricultural Region, Christine M. Zaicou-Kunesch and Wal Anderson, Department of Agriculture
13. Agronomic responses of new wheat varieties in the Central Agricultural Region of WA, Darshan Sharma, Steve Penny and Wal Anderson, Department of Agriculture
14. EGA Eagle Rock tolerance to metribuzin and its mixtures, Harmohinder Dhammu, David Nicholson and Chris Roberts, Department of Agriculture
15. Herbicide tolerance of new bread wheats, Harmohinder Dhammu1 and David Nicholson2, Department of Agriculture
NUTRITION
16. The impact of fertiliser placement, timing and rates on nitrogen-use efficiency, Stephen Loss, CSBP Ltd
17. Cereals deficient in potassium are most susceptible to some leaf diseases, Ross Brennan and Kith Jayasena, Department of Agriculture
18. Responses of cereal yields to potassium fertiliser type, placement and timing, Eddy Pol, CSBP Limited
19. Sulphate of Potash, the potash of choice at seeding, Simon Teakle, United Farmers Co-operative
20. Essential disease management for successful barley production, K. Jayasena, R. Loughman, C. Beard, B. Paynter, K. Tanaka, G. Poulish and A. Smith, Department of Agriculture
21. Genotypic differences in potassium efficiency of wheat, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia
22. Genotypic differences in potassium efficiency of barley, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia
23. Investigating timing of nitrogen application in wheat, Darshan Sharma and Lionel Martin, Department of Agriculture, and Muresk Institute of Agriculture, Curtin University of Technology
24. Nutrient timing requirements for increased crop yields in the high rainfall cropping zone, Narelle Hill, Ron McTaggart, Dr Wal Anderson and Ray Tugwell, Department of Agriculture
DISEASES
25. Integrate strategies to manage stripe rust risk, Geoff Thomas, Robert Loughman, Ciara Beard, Kith Jayasena and Manisha Shankar, Department of Agriculture
26. Effect of primary inoculum level of stripe rust on variety response in wheat, Manisha Shankar, John Majewski and Robert Loughman, Department of Agriculture
27. Disease resistance update for wheat varieties in WA, M. Shankar, J.M. Majewski, D. Foster, H. Golzar, J. Piotrowski and R. Loughman, Department of Agriculture
28. Big droplets for wheat fungicides, Rob Grima, Agronomist, Elders
29. On farm research to investigate fungicide applications to minimise leaf disease impacts in wheat, Jeff Russell and Angie Roe, Department of Agriculture, and Farm Focus Consultants
PESTS
30. Rotations for nematode management, Vivien A. Vanstone, Sean J. Kelly, Helen F. Hunter and Mena C. Gilchrist, Department of Agriculture
31. Investigation into the adaqyacy of sealed farm silos in Western Australia to control phosphine-resistant Rhyzopertha dominica, C.R. Newman, Department of Agriculture
32.Insect contamination of cereal grain at harvest, Svetlana Micic and Phil Michael, Department of Agriculture
33. Phosure – Extending the life of phosphine, Gabrielle Coupland and Ern Kostas, Co-operative Bulk Handling
SOIL
34. Optimum combinations of ripping depth and tine spacing for increasing wheat yield, Mohammed Hamza and Wal Anderson, Department of Agriculture
35. Hardpan penetration ability of wheat roots, Tina Botwright Acuña and Len Wade, School of Plant Biology, University of Western Australia
MARKETS
36. Latin America: An emerging agricultural powerhouse, Ingrid Richardson, Food and Agribusiness Research, Rabobank; Sydne
Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia
Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10−13), 1q42.13 (rs41271473, P=1.06 × 10−10), 4q24 (rs71597109, P=1.37 × 10−10), 4q35.1 (rs57214277, P=3.69 × 10−8), 6p21.31 (rs3800461, P=1.97 × 10−8), 11q23.2 (rs61904987, P=2.64 × 10−11), 18q21.1 (rs1036935, P=3.27 × 10−8), 19p13.3 (rs7254272, P=4.67 × 10−8) and 22q13.33 (rs140522, P=2.70 × 10−9). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response
Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia
Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10−13), 1q42.13 (rs41271473, P=1.06 × 10−10), 4q24 (rs71597109, P=1.37 × 10−10), 4q35.1 (rs57214277, P=3.69 × 10−8), 6p21.31 (rs3800461, P=1.97 × 10−8), 11q23.2 (rs61904987, P=2.64 × 10−11), 18q21.1 (rs1036935, P=3.27 × 10−8), 19p13.3 (rs7254272, P=4.67 × 10−8) and 22q13.33 (rs140522, P=2.70 × 10−9). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response
Readout of a quantum processor with high dynamic range Josephson parametric amplifiers
We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in
which the active nonlinear element is implemented using an array of rf-SQUIDs.
The device is matched to the 50 environment with a Klopfenstein-taper
impedance transformer and achieves a bandwidth of 250-300 MHz, with input
saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor
was used to benchmark these devices, providing a calibration for readout power,
an estimate of amplifier added noise, and a platform for comparison against
standard impedance matched parametric amplifiers with a single dc-SQUID. We
find that the high power rf-SQUID array design has no adverse effect on system
noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on
amplifier added noise at 1.6 times the quantum limit. Lastly, amplifiers with
this design show no degradation in readout fidelity due to gain compression,
which can occur in multi-tone multiplexed readout with traditional JPAs.Comment: 9 pages, 8 figure
Measurement-Induced State Transitions in a Superconducting Qubit: Within the Rotating Wave Approximation
Superconducting qubits typically use a dispersive readout scheme, where a
resonator is coupled to a qubit such that its frequency is qubit-state
dependent. Measurement is performed by driving the resonator, where the
transmitted resonator field yields information about the resonator frequency
and thus the qubit state. Ideally, we could use arbitrarily strong resonator
drives to achieve a target signal-to-noise ratio in the shortest possible time.
However, experiments have shown that when the average resonator photon number
exceeds a certain threshold, the qubit is excited out of its computational
subspace, which we refer to as a measurement-induced state transition. These
transitions degrade readout fidelity, and constitute leakage which precludes
further operation of the qubit in, for example, error correction. Here we study
these transitions using a transmon qubit by experimentally measuring their
dependence on qubit frequency, average photon number, and qubit state, in the
regime where the resonator frequency is lower than the qubit frequency. We
observe signatures of resonant transitions between levels in the coupled
qubit-resonator system that exhibit noisy behavior when measured repeatedly in
time. We provide a semi-classical model of these transitions based on the
rotating wave approximation and use it to predict the onset of state
transitions in our experiments. Our results suggest the transmon is excited to
levels near the top of its cosine potential following a state transition, where
the charge dispersion of higher transmon levels explains the observed noisy
behavior of state transitions. Moreover, occupation in these higher energy
levels poses a major challenge for fast qubit reset
Overcoming leakage in scalable quantum error correction
Leakage of quantum information out of computational states into higher energy
states represents a major challenge in the pursuit of quantum error correction
(QEC). In a QEC circuit, leakage builds over time and spreads through
multi-qubit interactions. This leads to correlated errors that degrade the
exponential suppression of logical error with scale, challenging the
feasibility of QEC as a path towards fault-tolerant quantum computation. Here,
we demonstrate the execution of a distance-3 surface code and distance-21
bit-flip code on a Sycamore quantum processor where leakage is removed from all
qubits in each cycle. This shortens the lifetime of leakage and curtails its
ability to spread and induce correlated errors. We report a ten-fold reduction
in steady-state leakage population on the data qubits encoding the logical
state and an average leakage population of less than
throughout the entire device. The leakage removal process itself efficiently
returns leakage population back to the computational basis, and adding it to a
code circuit prevents leakage from inducing correlated error across cycles,
restoring a fundamental assumption of QEC. With this demonstration that leakage
can be contained, we resolve a key challenge for practical QEC at scale.Comment: Main text: 7 pages, 5 figure
- …