10 research outputs found

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    : Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Publisher Copyright: © 2023, The Author(s).Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.Peer reviewe

    Ten millennia of hepatitis B virus evolution

    Get PDF
    Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between ~10,500 and ~400 years ago. We date the most recent common ancestor of all HBV lineages to between ~20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for ~4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic

    Investigation of the Bronze Age sites in the estuarine trans-Kama river area

    No full text
    This article offers findings of field investigations on two Late Bronze Age sites: Berezovaya Griva I and Ivanovskiy Bor X, located on the left bank of the Kama River in the area of Kuybyshev dam lake. These findings suggest that the Berezovaya Griva I station had a complex history of colonization: it yielded materials of the Srubnaya cultural-historical community (18th – 15th centuries BC), the Lugovskaya culture (15th – 14th centuries BC) and the later stage of Maklasheevka culture (12th/11th – 10th centuries BC). The Ivanovskiy Bor X station is a single-layer site belonging to the late stage of the Maklasheevka culture. A barrow with wooden constructions mounded during the site’s existence was investigated on the territory of this station. The under-barrow structures resemble “long barrows” of the late stage of the Maklasheevka culture and the Early Iron Age one-chamber “houses of the dead” discovered in the Volga-Kama region

    Funeral sites of the beginning of the Late Bronze age in the estuarine Trans-Kama river area

    No full text
    The paper offers results of 2014 field research of the first stage of the late Bronze Age burial grounds in the Volga-Kama region –Novo-Mordovo II and Stary Kuybyshev VI. These burial grounds are located in the area of the abrasion escarpment of Kuybyshev dam lake, in the confluence of the Volga and the Kama rivers. The first burial ground was discovered by A.H. Khalikov in 1962, the second is a recent discovery. The authors believe that the funeral rite and the inventory of these sites are very similar. All inhumations were made in shallow sub-quadrangular pits, in a crouched position on the left side. The funeral rite and the inventory combine elements of the Pokrovskiy and the Potapovskiy cultural types, which makes the authors to suggest the origins of formation of the Zaymishche type sites here. Analogies revealed in the sites of the Pokrovskiy and Potapovskiy types date existence of Novo-Mordovo II and Stary Kuybyshev VI burial grounds to the period preceding the Srubnaya cultural-historical community, and overall can fit within 19th – 18th centuries BC

    Nomenclature for boranes and related species (IUPAC Recommendations 2019)

    Get PDF
    Abstract An appraisal of the current IUPAC recommendations for the nomenclature of boranes and related systems has been undertaken. New developments in the field have been investigated and existing nomenclature systems have been adapted to accommodate these new developments. The principal areas considered are stoichiometric and structural nomenclature (including heteroatom and metal-atom subrogation, as well as substitution of hydrogen), conjoined-cage species, supra-icosahedral systems, and sub-icosahedral non-standard structures. Elements of substitutive, additive, and replacement nomenclature systems have been integrated into individual names to address contentious problems in boron nomenclature that have been around for a long time

    Emergence of human-adapted Salmonella enterica is linked to the Neolithization process

    No full text
    It has been hypothesized that the Neolithic transition towards an agricultural and pastoralist economy facilitated the emergence of human-adapted pathogens. Here, we recovered eight Salmonella enterica subsp. enterica genomes from human skeletons of transitional foragers, pastoralists and agropastoralists in western Eurasia that were up to 6,500 yr old. Despite the high genetic diversity of S. enterica, all ancient bacterial genomes clustered in a single previously uncharacterized branch that contains S. enterica adapted to multiple mammalian species. All ancient bacterial genomes from prehistoric (agro-)pastoralists fall within a part of this branch that also includes the human-specific S. enterica Paratyphi C, illustrating the evolution of a human pathogen over a period of 5,000 yr. Bacterial genomic comparisons suggest that the earlier ancient strains were not host specific, differed in pathogenic potential and experienced convergent pseudogenization that accompanied their downstream host adaptation. These observations support the concept that the emergence of human-adapted S. enterica is linked to human cultural transformations

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years1, 2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants
    corecore