76 research outputs found

    Evolution of Exon-Intron Structure and Alternative Splicing

    Get PDF
    Despite significant advances in high-throughput DNA sequencing, many important species remain understudied at the genome level. In this study we addressed a question of what can be predicted about the genome-wide characteristics of less studied species, based on the genomic data from completely sequenced species. Using NCBI databases we performed a comparative genome-wide analysis of such characteristics as alternative splicing, number of genes, gene products and exons in 36 completely sequenced model species. We created statistical regression models to fit these data and applied them to loblolly pine (Pinus taeda L.), an example of an important species whose genome has not been completely sequenced yet. Using these models, the genome-wide characteristics, such as total number of genes and exons, can be roughly predicted based on parameters estimated from available limited genomic data, e.g. exon length and exon/gene ratio

    ZMIZ1 Preferably Enhances the Transcriptional Activity of Androgen Receptor with Short Polyglutamine Tract

    Get PDF
    The androgen receptor (AR) is a ligand-induced transcription factor and contains the polyglutamine (polyQ) tracts within its N-terminal transactivation domain. The length of polyQ tracts has been suggested to alter AR transcriptional activity in prostate cancer along with other endocrine and neurologic disorders. Here, we assessed the role of ZMIZ1, an AR co-activator, in regulating the activity of the AR with different lengths of polyQ tracts as ARQ9, ARQ24, and ARQ35 in prostate cancer cells. ZMIZ1, but not ZMIZ2 or ARA70, preferably augments ARQ9 induced androgen-dependent transcription on three different androgen-inducible promoter/reporter vectors. A strong protein-protein interaction between ZMIZ1 and ARQ9 proteins was shown by immunoprecipitation assays. In the presence of ZMIZ1, the N and C-terminal interaction of the ARQ9 was more pronounced than ARQ24 and ARQ35. Both Brg1 and BAF57, the components of SWI/SNF complexes, were shown to be involved in the enhancement of ZMIZ1 on AR activity. Using the chromatin immunoprecipitation assays (ChIP), we further demonstrated a strong recruitment of ZMIZ1 by ARQ9 on the promoter of the prostate specific antigen (PSA) gene. These results demonstrate a novel regulatory role of ZMIZ1 in modulating the polyQ tract length of AR in prostate cancer cells

    MicroRNA-sequence profiling reveals novel osmoregulatory microRNA expression patterns in catadromous eel anguilla marmorata

    Get PDF
    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. Recently, several miRNAs have been confirmed to execute directly or indirectly osmoregulatory functions in fish via translational control. In order to clarify whether miRNAs play relevant roles in the osmoregulation of Anguilla marmorata, three sRNA libraries of A. marmorata during adjusting to three various salinities were sequenced by Illumina sRNA deep sequencing methods. Totally 11,339,168, 11,958,406 and 12,568,964 clear reads were obtained from 3 different libraries, respectively. Meanwhile, 34 conserved miRNAs and 613 novel miRNAs were identified using the sequence data. MiR-10b-5p, miR-181a, miR-26a-5p, miR-30d and miR-99a-5p were dominantly expressed in eels at three salinities. Totally 29 mature miRNAs were significantly up-regulated, while 72 mature miRNAs were significantly down-regulated in brackish water (10‰ salinity) compared with fresh water (0‰ salinity); 24 mature miRNAs were significantly up-regulated, while 54 mature miRNAs were significantly down-regulated in sea water (25‰ salinity) compared with fresh water. Similarly, 24 mature miRNAs were significantly up-regulated, while 45 mature miRNAs were significantly down-regulated in sea water compared with brackish water. The expression patterns of 12 dominantly expressed miRNAs were analyzed at different time points when the eels transferred from fresh water to brackish water or to sea water. These miRNAs showed differential expression patterns in eels at distinct salinities. Interestingly, miR-122, miR-140-3p and miR-10b-5p demonstrated osmoregulatory effects in certain salinities. In addition, the identification and characterization of differentially expressed miRNAs at different salinities can clarify the osmoregulatory roles of miRNAs, which will shed lights for future studies on osmoregulation in fish

    Estimating PM 2.5 concentrations in Xi'an City using a generalized additive model with multi-source monitoring data

    Get PDF
    © 2015 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi'an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    State and irrigation: archeological and textual evidence of water management in late Bronze Age China

    Get PDF
    Ancient China remains an important case to investigate the relationship between statecraft development and ‘total power.’ While important economic and social developments were achieved in the late Neolithic, it was not until the late Bronze Age (first millennium BC) that state-run irrigation systems began to be built. Construction of large-scale irrigation projects, along with walls and defensive facilities, became vital to regional states who were frequently involved in chaotic warfare and desperate to increase food production to feed the growing population. Some of the irrigation infrastructures were brought into light by recent archeological surveys. We scrutinize fast accumulating archeological evidence and review rich historical accounts on late Bronze Age irrigation systems. While the credibility of historical documents is often questioned, with a robust integration with archeological data, they provide important information to understand functions and maintenance of the irrigation projects. We investigate structure and organization of large-scale irrigation systems built and run by states and their importance to understanding dynamic trajectories to social power in late Bronze Age China. Cleverly designed based on local environmental and hydrological conditions, these projects fundamentally changed water management and farming patterns, with dramatic ecological consequences in different states. Special bureaucratic divisions were created and laws were made to further enhance the functioning of these large-scale irrigation systems. We argue that they significantly increased productivity by converting previously unoccupied land into fertile ground and pushed population threshold to a new level. A hypothesis should be tested in further archeological research

    The detection of nitrogen dioxide in air with fiber optical sensor based on sol-gel film

    No full text
    Sol-gel sensing film for nitrogen dioxide was prepared with tetraethylorthosilicate (TEOS), which immersed sulfanilamide as diazotizing reagent and N, N-dimethyl-1-naphthyl-amine as coupling reagent. The fiber optical sensor was consist of the sensing film and optical fiber, which could detect NO, in air in the dynastic range from 60 similar to 600 ng/L with an accumulation method. The recipes of Sol-gel film were optimized to prepare the sensing film with high specific surface and good sensitivity to NO, at ng/L level in air. The acidity and concentrations of the sensing reagents as well as the flow rate of the sample gas were optimized. The effect of the coexist gases such as N-2, O-2, CO2, SO2 and NO on the sensor was studied. The detection limit of sensor was 5 ng/L hourly, and the relative standard deviation was 4.4% (n = 6, C-No2 = 200 ng/L, 1 hour), which showed the sensor could be applied to monitoring NO, at low level in air
    corecore