50 research outputs found

    An Empirical study of the impact of newly consturcted [i.e. constructed] railway lines on nearby residental property prices in Hong Kong

    Get PDF
    Thesis (B.Sc)--University of Hong Kong, 2004.published_or_final_versio

    A Robust RGBD Slam System for 3D Environment with Planar Surfaces

    Get PDF
    With the increasing popularity of RGB-depth (RGB-D) sensors such as the Microsoft Kinect, there have been much research on capturing and reconstructing 3D environments using a movable RGB-D sensor. The key process behind these kinds of simultaneous location and mapping (SLAM) systems is the iterative closest point or ICP algorithm, which is an iterative algorithm that can estimate the rigid movement of the camera based on the captured 3D point clouds. While ICP is a well-studied algorithm, it is problematic when it is used in scanning large planar regions such as wall surfaces in a room. The lack of depth variations on planar surfaces makes the global alignment an ill-conditioned problem. In this paper, we present a novel approach for registering 3D point clouds by combining both color and depth information. Instead of directly searching for point correspondences among 3D data, the proposed method first extracts features from the RGB images, and then back-projects the features to the 3D space to identify more reliable correspondences. These color correspondences form the initial input to the ICP procedure which then proceeds to refine the alignment. Experimental results show that our proposed approach can achieve better accuracy than existing SLAMs in reconstructing indoor environments with large planar surfaces

    A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks

    Get PDF
    From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. Practical applications often use sparsely-placed cameras to maximize visibility, while using as few cameras as possible to minimize cost. In general, it is challenging to calibrate sparse camera networks due to the lack of shared scene features across different camera views. In this paper, we propose a novel algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Our work has a number of novel features. First, to cope with the wide separation between different cameras, we establish view correspondences by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic calibration using rigid transformation, which is optimal only for pinhole cameras, we systematically test different view transformation functions including rigid transformation, polynomial transformation and manifold regression to determine the most robust mapping that generalizes well to unseen data. Third, we reformulate the celebrated bundle adjustment procedure to minimize the global 3D reprojection error so as to fine-tune the initial estimates. Finally, our scalable client-server architecture is computationally efficient: the calibration of a five-camera system, including data capture, can be done in minutes using only commodity PCs. Our proposed framework is compared with other state-of-the-arts systems using both quantitative measurements and visual alignment results of the merged point clouds

    The photometric observation of the quasi-simultaneous mutual eclipse and occultation between Europa and Ganymede on 22 August 2021

    Full text link
    Mutual events (MEs) are eclipses and occultations among planetary natural satellites. Most of the time, eclipses and occultations occur separately. However, the same satellite pair will exhibit an eclipse and an occultation quasi-simultaneously under particular orbital configurations. This kind of rare event is termed as a quasi-simultaneous mutual event (QSME). During the 2021 campaign of mutual events of jovian satellites, we observed a QSME between Europa and Ganymede. The present study aims to describe and study the event in detail. We observed the QSME with a CCD camera attached to a 300-mm telescope at the Hong Kong Space Museum Sai Kung iObservatory. We obtained the combined flux of Europa and Ganymede from aperture photometry. A geometric model was developed to explain the light curve observed. Our results are compared with theoretical predictions (O-C). We found that our simple geometric model can explain the QSME fairly accurately, and the QSME light curve is a superposition of the light curves of an eclipse and an occultation. Notably, the observed flux drops are within 2.6% of the theoretical predictions. The size of the event central time O-Cs ranges from -14.4 to 43.2 s. Both O-Cs of flux drop and timing are comparable to other studies adopting more complicated models. Given the event rarity, model simplicity and accuracy, we encourage more observations and analysis on QSMEs to improve Solar System ephemerides.Comment: 23 pages, 5 appendixes, 16 figures, 7 table

    Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure - a finite element study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Finite element analysis results will show significant differences if the model used is performed under various material properties, geometries, loading modes or other conditions. This study adopted an FE model, taking into account the possible asymmetry inherently existing in the spine with respect to the sagittal plane, with a more geometrically realistic outline to analyze and compare the biomechanical behaviour of the lumbar spine with regard to the facet force and intradiscal pressure, which are associated with low back pain symptoms and other spinal disorders. Dealing carefully with the contact surfaces of the facet joints at various levels of the lumbar spine can potentially help us further ascertain physiological behaviour concerning the frictional effects of facet joints under separate loadings or the responses to the compressive loads in the discs.</p> <p>Methods</p> <p>A lumbar spine model was constructed from processes including smoothing the bony outline of each scan image, stacking the boundary lines into a smooth surface model, and subsequent further processing in order to conform with the purpose of effective finite element analysis performance. For simplicity, most spinal components were modelled as isotropic and linear materials with the exception of spinal ligaments (bilinear). The contact behaviour of the facet joints and changes of the intradiscal pressure with different postures were analyzed.</p> <p>Results</p> <p>The results revealed that asymmetric responses of the facet joint forces exist in various postures and that such effect is amplified with larger loadings. In axial rotation, the facet joint forces were relatively larger in the contralateral facet joints than in the ipsilateral ones at the same level. Although the effect of the preloads on facet joint forces was not apparent, intradiscal pressure did increase with preload, and its magnitude increased more markedly in flexion than in extension and axial rotation.</p> <p>Conclusions</p> <p>Disc pressures showed a significant increase with preload and changed more noticeably in flexion than in extension or in axial rotation. Compared with the applied preloads, the postures played a more important role, especially in axial rotation; the facet joint forces were increased in the contralateral facet joints as compared to the ipsilateral ones at the same level of the lumbar spine.</p

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P &lt; 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Reader self-perception and academic reading achievement of the junior form students of a local secondary school: implications for a reading program

    No full text
    published_or_final_versionLinguisticsMasterMaster of Arts in Applied Linguistic

    Lipoma of the Palatine Tonsil

    Get PDF
    Lipomas are benign tumors composed of mature fat cells. They occur frequently in subcutaneous tissue but rarely in the upper aerodigestive tract. Tonsillar lipomas are rare. To our knowledge, there are only six documented cases in the English literature. Here, we present the case of a 46-year-old Taiwanese female with a submerged oval yellowish mass in her left palatine tonsil. She received tonsillectomy and the pathologic diagnosis was tonsillar lipoma. The clinical presentation, management and literature review are also presented
    corecore