152 research outputs found

    DATABASE APPROACH FOR MULTIPLE-CRITERIA DECISION SUPPORT SYSTEMS

    Get PDF
    This paper focuses on data management aspects of computerized decision support systems which use interactive multiple criteria decision methods. In this context, we point out the technical requirements for such systems and the importance of the data management tool to MCDSS. After a discussion of candidate data models (i.e. relational, hierarchical, and network), we examine the criteria to use in choosing the data model for MCDSS. In the last part of this paper, we review some database management services which support data definition, data manipulation, and data integrity within the multiple-criteria decision making framework. These services guide us when designing the appropriate architecture for the MCDSSΓ’s data component.Information Systems Working Papers Serie

    Partial-Thickness Rotator Cuff Tears

    Get PDF
    Although the incidence of partial-thickness rotator cuff tears (PTRCTs) was reported to be from 13% to 32% in cadaveric studies, the actual incidence is not yet known. The causes of PTRCTs can be explained by either extrinsic or intrinsic theories. Studies suggest that intrinsic degeneration within the rotator cuff is the principal factor in the pathogenesis of rotator cuff tears. Extrinsic causes include subacromial impingement, acute traumatic events, and repetitive microtrauma. However, acromially initiated rotator cuff pathology does not occur and extrinsic impingement does not cause pathology on the articular side of the tendon. An arthroscopic classification system has been developed based on the location and depth of the tear. These include the articular, bursal, and intratendinous areas. Both ultrasound and magnetic resonance image are reported with a high accuracy of 87%. Conservative treatment, such as subacromial or intra-articular injections and suprascapular nerve block with or without block of the articular branches of the circumflex nerve, should be considered prior to operative treatment for PTRCTs

    Nucleolin, a Shuttle Protein Promoting Infection of Human Monocytes by Francisella tularensis

    Get PDF
    International audienceWe herein confirm the importance of nucleolin expression for LVS binding and its specificity as nucleolin is not involved in binding of another intracellular pathogen as L. monocytogenes or an inert particle. Association of nucleolin with F. tularensis during infection continues intracellularly after endocytosis of the bacteria. The present work therefore unravels for the first time the presence of nucleolin in the phagosomal compartment of macrophages

    In vitro transcription profiling of the ΟƒS subunit of bacterial RNA polymerase: re-definition of the ΟƒS regulon and identification of ΟƒS-specific promoter sequence elements

    Get PDF
    Specific promoter recognition by bacterial RNA polymerase is mediated by Οƒ subunits, which assemble with RNA polymerase core enzyme (E) during transcription initiation. However, Οƒ70 (the housekeeping Οƒ subunit) and ΟƒS (an alternative Οƒ subunit mostly active during slow growth) recognize almost identical promoter sequences, thus raising the question of how promoter selectivity is achieved in the bacterial cell. To identify novel sequence determinants for selective promoter recognition, we performed run-off/microarray (ROMA) experiments with RNA polymerase saturated either with Οƒ70 (EΟƒ70) or with ΟƒS (EΟƒS) using the whole Escherichia coli genome as DNA template. We found that EΟƒ70, in the absence of any additional transcription factor, preferentially transcribes genes associated with fast growth (e.g. ribosomal operons). In contrast, EΟƒS efficiently transcribes genes involved in stress responses, secondary metabolism as well as RNAs from intergenic regions with yet-unknown function. Promoter sequence comparison suggests that, in addition to different conservation of the βˆ’35 sequence and of the UP element, selective promoter recognition by either form of RNA polymerase can be affected by the A/T content in the βˆ’10/+1 region. Indeed, site-directed mutagenesis experiments confirmed that an A/T bias in the βˆ’10/+1 region could improve promoter recognition by EΟƒS

    Autophagy and bacterial infectious diseases

    Get PDF
    Autophagy is a housekeeping process that maintains cellular homeostasis through recycling of nutrients and degradation of damaged or aged cytoplasmic constituents. Over the past several years, accumulating evidence has suggested that autophagy can function as an intracellular innate defense pathway in response to infection with a variety of bacteria and viruses. Autophagy plays a role as a specialized immunologic effector and regulates innate immunity to exert antimicrobial defense mechanisms. Numerous bacterial pathogens have developed the ability to invade host cells or to subvert host autophagy to establish a persistent infection. In this review, we have summarized the recent advances in our understanding of the interaction between antibacterial autophagy (xenophagy) and different bacterial pathogens

    Host Factors Required for Modulation of Phagosome Biogenesis and Proliferation of Francisella tularensis within the Cytosol

    Get PDF
    Francisella tularensis is a highly infectious facultative intracellular bacterium that can be transmitted between mammals by arthropod vectors. Similar to many other intracellular bacteria that replicate within the cytosol, such as Listeria, Shigella, Burkholderia, and Rickettsia, the virulence of F. tularensis depends on its ability to modulate biogenesis of its phagosome and to escape into the host cell cytosol where it proliferates. Recent studies have identified the F. tularensis genes required for modulation of phagosome biogenesis and escape into the host cell cytosol within human and arthropod-derived cells. However, the arthropod and mammalian host factors required for intracellular proliferation of F. tularensis are not known. We have utilized a forward genetic approach employing genome-wide RNAi screen in Drosophila melanogaster-derived cells. Screening a library of ∼21,300 RNAi, we have identified at least 186 host factors required for intracellular bacterial proliferation. We silenced twelve mammalian homologues by RNAi in HEK293T cells and identified three conserved factors, the PI4 kinase PI4KCA, the ubiquitin hydrolase USP22, and the ubiquitin ligase CDC27, which are also required for replication in human cells. The PI4KCA and USP22 mammalian factors are not required for modulation of phagosome biogenesis or phagosomal escape but are required for proliferation within the cytosol. In contrast, the CDC27 ubiquitin ligase is required for evading lysosomal fusion and for phagosomal escape into the cytosol. Although F. tularensis interacts with the autophagy pathway during late stages of proliferation in mouse macrophages, this does not occur in human cells. Our data suggest that F. tularensis utilizes host ubiquitin turnover in distinct mechanisms during the phagosomal and cytosolic phases and phosphoinositide metabolism is essential for cytosolic proliferation of F. tularensis. Our data will facilitate deciphering molecular ecology, patho-adaptation of F. tularensis to the arthropod vector and its role in bacterial ecology and patho-evolution to infect mammals

    Requirement of the CXXC Motif of Novel Francisella Infectivity Potentiator Protein B FipB, and FipA in Virulence of F. tularensis subsp. tularensis

    Get PDF
    The lipoprotein encoded by the Francisella tularensis subsp. tularensis locus FTT1103 is essential for virulence; an FTT1103 deletion mutant is defective in uptake and intracellular survival, and mice survive high dose challenges of greater than 108 bacteria. This protein has two conserved domains; one is found in a class of virulence proteins called macrophage infectivity potentiator (Mip) proteins, and the other in oxidoreductase Disulfide Bond formation protein A (DsbA)-related proteins. We have designated the protein encoded by FTT1103 as FipB for Francisella infectivity potentiator protein B. The locus FTT1102 (fipA), which is upstream of fipB, also has similarity to same conserved Mip domain. Deletion and site-specific mutants of fipA and fipB were constructed in the Schu S4 strain, and characterized with respect to intracellular replication and in vivo virulence. A nonpolar fipA mutant demonstrated reduced survival in host cells, but was only slightly attenuated in vivo. Although FipB protein was present in a fipA mutant, the abundance of the three isoforms of FipB was altered, suggesting that FipA has a role in post-translational modification of FipB. Similar to many DsbA homologues, FipB contains a cysteine-any amino acid-any amino acid-cysteine (CXXC) motif. This motif was found to be important for FipB's role in virulence; a deletion mutant complemented with a gene encoding a FipB protein in which the first cysteine was changed to an alanine residue (AXXC) failed to restore intracellular survival or in vivo virulence. Complementation with a gene that encoded a CXXA containing FipB protein was significantly defective in intracellular growth; however, only slightly attenuated in vivo

    TLR2 Signaling Contributes to Rapid Inflammasome Activation during F. novicida Infection

    Get PDF
    Early detection of microorganisms by the innate immune system is provided by surface-expressed and endosomal pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). Detection of microbial components by TLRs initiates a signaling cascade leading to the expression of proinflammatory cytokines including IL-6 and IL-1Ξ². Some intracellular bacteria subvert the TLR response by rapidly escaping the phagosome and entering the cytosol. However, these bacteria may be recognized by the inflammasome, a multi-protein complex comprised of a sensor protein, ASC and the cysteine protease caspase-1. Inflammasome activation leads to release of the proinflammatory cytokines IL-1Ξ² and IL-18 and death of the infected cell, an important host defense that eliminates the pathogen's replicative niche. While TLRs and inflammasomes are critical for controlling bacterial infections, it is unknown whether these distinct host pathways cooperate to activate defenses against intracellular bacteria.Using the intracellular bacterium Francisella novicida as a model, we show that TLR2(-/-) macrophages exhibited delayed inflammasome activation compared to wild-type macrophages as measured by inflammasome assembly, caspase-1 activation, cell death and IL-18 release. TLR2 also contributed to inflammasome activation in response to infection by the cytosolic bacterium Listeria monocytogenes. Components of the TLR2 signaling pathway, MyD88 and NF-ΞΊB, were required for rapid inflammasome activation. Furthermore, TLR2(-/-) mice exhibited lower levels of cell death, caspase-1 activation, and IL-18 production than wild-type mice upon F. novicida infection.These results show that TLR2 is required for rapid inflammasome activation in response to infection by cytosolic bacterial pathogens. In addition to further characterizing the role of TLR2 in host defense, these findings broaden our understanding of how the host integrates signals from spatiotemporally separated PRRs to coordinate an innate response against intracellular bacteria
    • …
    corecore