3,724 research outputs found

    Superconducting atomic contacts under microwave irradiation

    Get PDF
    We have measured the effect of microwave irradiation on the dc current-voltage characteristics of superconducting atomic contacts. The interaction of the external field with the ac supercurrents leads to replicas of the supercurrent peak, the well known Shapiro resonances. The observation of supplementary fractional resonances for contacts containing highly transmitting conduction channels reveals their non-sinusoidal current-phase relation. The resonances sit on a background current which is itself deeply modified, as a result of photon assisted multiple Andreev reflections. The results provide firm support for the full quantum theory of transport between two superconductors based on the concept of Andreev bound states

    Acoustic effectiveness of pulpit reflector in churches

    Get PDF
    Since the 12th century, pulpits and pulpit reflectors (canopies) were widely used in churches. This paper studies the acoustic effectiveness of such devices based on in site measurements (STI and D50) in four (unoccupied) churches with pulpits with and without the canopy. The pulpit reflector can remove the late reflection resulting from a high ceiling and makes possible to improve the listening conditions at medium distance from the pulpit. The pulpit reflector effectiveness decreases and becomes even unfavourable when the height of the ceiling drops (h < 10 m) and when the distance to the speaker increases. The absolute variations of speech intelligibility ratings are generally rather weak (average STI variation from +0.01 to -0.03), but can increase in the presence of an assembly

    Spatial clustering of mental disorders and associated characteristics of the neighbourhood context in Malmö, Sweden, in 2001

    Get PDF
    Study objective: Previous research provides preliminary evidence of spatial variations of mental disorders and associations between neighbourhood social context and mental health. This study expands past literature by (1) using spatial techniques, rather than multilevel models, to compare the spatial distributions of two groups of mental disorders (that is, disorders due to psychoactive substance use, and neurotic, stress related, and somatoform disorders); and (2) investigating the independent impact of contextual deprivation and neighbourhood social disorganisation on mental health, while assessing both the magnitude and the spatial scale of these effects. Design: Using different spatial techniques, the study investigated mental disorders due to psychoactive substance use, and neurotic disorders. Participants: All 89 285 persons aged 40–69 years residing in Malmö, Sweden, in 2001, geolocated to their place of residence. Main results: The spatial scan statistic identified a large cluster of increased prevalence in a similar location for the two mental disorders in the northern part of Malmö. However, hierarchical geostatistical models showed that the two groups of disorders exhibited a different spatial distribution, in terms of both magnitude and spatial scale. Mental disorders due to substance consumption showed larger neighbourhood variations, and varied in space on a larger scale, than neurotic disorders. After adjustment for individual factors, the risk of substance related disorders increased with neighbourhood deprivation and neighbourhood social disorganisation. The risk of neurotic disorders only increased with contextual deprivation. Measuring contextual factors across continuous space, it was found that these associations operated on a local scale. Conclusions: Taking space into account in the analyses permitted deeper insight into the contextual determinants of mental disorders

    Near-infrared integral-field spectra of the planet/brown dwarf companion AB Pic b

    Full text link
    Chauvin et al. 2005 imaged a co-moving companion at ~260 AU from the young star AB Pic A. Evolutionary models predictions based on J H K photometry of AB Pic b suggested a mass of ~13 - 14 MJup, placing the object at the deuterium-burning boundary. We used the adaptive-optics-fed integral field spectrograph SINFONI to obtain high quality medium-resolution spectra of AB Pic b (R = 1500-2000) over the 1.1 - 2.5 microns range. Our analysis relies on the comparison of our spectra to young standard templates and to the latest libraries of synthetic spectra developed by the Lyon's Group. AB Pic b is confirmed to be a young early-L dwarf companion. We derive a spectral type L0-L1 and find several features indicative of intermediate gravity atmosphere. A comparison to synthetic spectra yields Teff = 2000+100-300 K and log(g) = 4 +- 0.5 dex. The determination of the derived atmospheric parameters of AB Pic b is limited by a non-perfect match of current atmosphere spectra with our near-infrared observations of AB Pic b. The current treatment of dust settling and missing molecular opacity lines in the atmosphere models could be responsible. By combining the observed photometry, the surface fluxes from atmosphere models and the known distance of the system, we derive new mass, luminosity and radius estimates of AB Pic b. They confirm independently the evolutionary model predictions. We finally review the current methods used to characterize planetary mass companions and discuss them in the perspective of future planet deep imaging surveys.Comment: 8 pages, 8 figure

    A library of near-infrared integral field spectra of young M-L dwarfs

    Full text link
    We present a library of near-infrared (1.1-2.45 microns) medium-resolution (R~1500-2000) integral field spectra of 15 young M6-L0 dwarfs, composed of companions with known ages and of isolated objects. We use it to (re)derive the NIR spectral types, luminosities and physical parameters of the targets, and to test (BT-SETTL, DRIFT-PHOENIX) atmospheric models. We derive infrared spectral types L0+-1, L0+-1, M9.5+-0.5, M9.5+-0.5, M9.25+-0.25, M8+0.5-0.75, and M8.5+-0.5 for AB Pic b, Cha J110913-773444, USco CTIO 108B, GSC 08047-00232 B, DH Tau B, CT Cha b, and HR7329B, respectively. BT-SETTL and DRIFT-PHOENIX models yield close Teff and log g estimates for each sources. The models seem to evidence a 600-300+600 K drop of the effective temperature at the M-L transition. Assuming the former temperatures are correct, we derive new mass estimates which confirm that DH Tau B, USco CTIO 108B, AB Pic b, KPNO Tau 4, OTS 44, and Cha1109 lay inside or at the boundary of the planetary mass range. We combine the empirical luminosities of the M9.5-L0 sources to the Teff to derive semi-empirical radii estimates that do not match "hot-start" evolutionary models predictions at 1-3 Myr. We use complementary data to demonstrate that atmospheric models are able to reproduce the combined optical and infrared spectral energy distribution, together with the near-infrared spectra of these sources simultaneously. But the models still fail to represent the dominant features in the optical. This issue casts doubts on the ability of these models to predict correct effective temperatures from near-infrared spectra alone. We advocate the use of photometric and spectroscopic data covering a broad range of wavelengths to study the properties of very low mass young companions to be detected with the planet imagers (Subaru/SCExAO, LBT/LMIRCam, Gemini/GPI, VLT/SPHERE).Comment: 27 pages, 14 tables, 19 figures, accepted for publication in Astronomy & Astrophysic

    Deep search for companions to probable young brown dwarfs

    Get PDF
    We have obtained high contrast images of four nearby, faint, and very low mass objects 2MASSJ04351455-1414468, SDSSJ044337.61+000205.1, 2MASSJ06085283-2753583 and 2MASSJ06524851-5741376 (here after 2MASS0435-14, SDSS0443+00, 2MASS0608-27 and 2MASS0652-57), identified in the field as probable isolated young brown dwarfs. Our goal was to search for binary companions down to the planetary mass regime. We used the NAOS-CONICA adaptive optics instrument (NACO) and its unique capability to sense the wavefront in the near-infrared to acquire sharp images of the four systems in Ks, with a field of view of 28"*28". Additional J and L' imaging and follow-up observations at a second epoch were obtained for 2MASS0652-57. With a typical contrast DKs= 4.0-7.0 mag, our observations are sensitive down to the planetary mass regime considering a minimum age of 10 to 120 Myr for these systems. No additional point sources are detected in the environment of 2MASS0435-14, SDSS0443+00 and 2MASS0608-27 between 0.1-12" (i.e about 2 to 250 AU at 20 pc). 2MASS0652-57 is resolved as a \sim230 mas binary. Follow-up observations reject a background contaminate, resolve the orbital motion of the pair, and confirm with high confidence that the system is physically bound. The J, Ks and L' photometry suggest a q\sim0.7-0.8 mass ratio binary with a probable semi-major axis of 5-6 AU. Among the four systems, 2MASS0652-57 is probably the less constrained in terms of age determination. Further analysis would be necessary to confirm its youth. It would then be interesting to determine its orbital and physical properties to derive the system's dynamical mass and to test evolutionary model predictions.Comment: Research note, 5 pages, 2 tables and 3 figures, accepted to A&

    High resolution imaging of young M-type stars of the solar neighborhood: Probing the existence of companions down to the mass of Jupiter

    Full text link
    Context. High contrast imaging is a powerful technique to search for gas giant planets and brown dwarfs orbiting at separation larger than several AU. Around solar-type stars, giant planets are expected to form by core accretion or by gravitational instability, but since core accretion is increasingly difficult as the primary star becomes lighter, gravitational instability would be the a probable formation scenario for yet-to-be-found distant giant planets around a low-mass star. A systematic survey for such planets around M dwarfs would therefore provide a direct test of the efficiency of gravitational instability. Aims. We search for gas giant planets orbiting around late-type stars and brown dwarfs of the solar neighborhood. Methods. We obtained deep high resolution images of 16 targets with the adaptive optic system of VLT-NACO in the Lp band, using direct imaging and angular differential imaging. This is currently the largest and deepest survey for Jupiter-mass planets around Mdwarfs. We developed and used an integrated reduction and analysis pipeline to reduce the images and derive our 2D detection limits for each target. The typical contrast achieved is about 9 magnitudes at 0.5" and 11 magnitudes beyond 1". For each target we also determine the probability of detecting a planet of a given mass at a given separation in our images. Results. We derived accurate detection probabilities for planetary companions, taking into account orbital projection effects, with in average more than 50% probability to detect a 3MJup companion at 10AU and a 1.5MJup companion at 20AU, bringing strong constraints on the existence of Jupiter-mass planets around this sample of young M-dwarfs.Comment: Accepted for publication in A&

    A companion candidate in the gap of the T Cha transitional disk

    Full text link
    T Cha is a young star surrounded by a cold disk. The presence of a gap within its disk, inferred from fitting to the spectral energy distribution, has suggested on-going planetary formation. We observed T Cha in L' and K_s with NAOS-CONICA, the adaptive optics system at the VLT, using sparse aperture masking. We detected a source in the L' data at a separation of 62+-7 mas, position angle of 78+-1 degrees, and a contrast of delta L' = 5.1+-0.2 mag. The object is not detected in the Ks band data, which show a 3-sigma contrast limit of 5.2 mag at the position of the detected L' source. For a distance of 108 pc, the detected companion candidate is located at 6.7 AU from the primary, well within the disk gap. If T Cha and the companion candidate are bound, the comparison of the L' and Ks photometry with evolutionary tracks shows that the photometry is inconsistent with any unextincted photosphere at the age and distance of T Cha. The detected object shows a very red Ks-L' color for which a possible explanation would be a significant amount of dust around it. This would imply that the companion candidate is young, which would strengthen the case for a physical companion, and moreover that the object would be in the substellar regime, according to the Ks upper limit. Another exciting possibility would be that this companion is a recently formed planet within the disk. Additional observations are mandatory to confirm that the object is bound and to properly characterize it.Comment: 4 pages, 4 figures; accepted for publication by A&
    corecore