77 research outputs found
HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype.
Aortic calcification is an important independent predictor of future cardiovascular events. We performed a genome-wide association meta-analysis to determine SNPs associated with the extent of abdominal aortic calcification (nâ=â9,417) or descending thoracic aortic calcification (nâ=â8,422). Two genetic loci, HDAC9 and RAP1GAP, were associated with abdominal aortic calcification at a genome-wide level (Pâ<â5.0âĂâ10-8). No SNPs were associated with thoracic aortic calcification at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle cells promoted calcification and reduced contractility, while inhibition of HDAC9 in human aortic smooth muscle cells inhibited calcification and enhanced cell contractility. In matrix Gla protein-deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% reduction in aortic calcification and improved survival. This translational genomic study identifies the first genetic risk locus associated with calcification of the abdominal aorta and describes a previously unknown role for HDAC9 in the development of vascular calcification
Multi-centre parallel arm randomised controlled trial to assess the effectiveness and cost-effectiveness of a group-based cognitive behavioural approach to managing fatigue in people with multiple sclerosis
Abstract (provisional)
Background
Fatigue is one of the most commonly reported and debilitating symptoms of multiple sclerosis (MS); approximately two-thirds of people with MS consider it to be one of their three most troubling symptoms. It may limit or prevent participation in everyday activities, work, leisure, and social pursuits, reduce psychological well-being and is one of the key precipitants of early retirement. Energy effectiveness approaches have been shown to be effective in reducing MS-fatigue, increasing self-efficacy and improving quality of life. Cognitive behavioural approaches have been found to be effective for managing fatigue in other conditions, such as chronic fatigue syndrome, and more recently, in MS. The aim of this pragmatic trial is to evaluate the clinical and cost-effectiveness of a recently developed group-based fatigue management intervention (that blends cognitive behavioural and energy effectiveness approaches) compared with current local practice.
Methods
This is a multi-centre parallel arm block-randomised controlled trial (RCT) of a six session group-based fatigue management intervention, delivered by health professionals, compared with current local practice. 180 consenting adults with a confirmed diagnosis of MS and significant fatigue levels, recruited via secondary/primary care or newsletters/websites, will be randomised to receive the fatigue management intervention or current local practice. An economic evaluation will be undertaken alongside the trial. Primary outcomes are fatigue severity, self-efficacy and disease-specific quality of life. Secondary outcomes include fatigue impact, general quality of life, mood, activity patterns, and cost-effectiveness. Outcomes in those receiving the fatigue management intervention will be measured 1 week prior to, and 1, 4, and 12 months after the intervention (and at equivalent times in those receiving current local practice). A qualitative component will examine what aspects of the fatigue management intervention participants found helpful/unhelpful and barriers to change.
Discussion
This trial is the fourth stage of a research programme that has followed the Medical Research Council guidance for developing and evaluating complex interventions. What makes the intervention unique is that it blends cognitive behavioural and energy effectiveness approaches. A potential strength of the intervention is that it could be integrated into existing service delivery models as it has been designed to be delivered by staff already working with people with MS. Service users will be involved throughout this research. Trial registration: Current Controlled Trials ISRCTN7651747
Early Detection of Ovarian Cancer using the Risk of Ovarian Cancer Algorithm with Frequent CA125 Testing in Women at Increased Familial Risk â Combined Results from Two Screening Trials
Purpose: Women at familial/genetic ovarian cancer risk often undergo screening despite unproven efficacy. Research suggests each woman has her own CA125 baseline; significant increases above this level may identify cancers earlier than standard 6- to 12-monthly CA125 > 35 U/mL. Experimental Design: Data from prospective Cancer Genetics Network and Gynecologic Oncology Group trials, which screened 3,692 women (13,080 woman-screening years) with a strong breast/ovarian cancer family history or BRCA1/2 mutations, were combined to assess a novel screening strategy. Specifically, serum CA125 q3 months, evaluated using a risk of ovarian cancer algorithm (ROCA), detected significant increases above each subject's baseline, which triggered transvaginal ultrasound. Specificity and positive predictive value (PPV) were compared with levels derived from general population screening (specificity 90%, PPV 10%), and stage-at-detection was compared with historical high-risk controls. Results: Specificity for ultrasound referral was 92% versus 90% ( P = 0.0001), and PPV was 4.6% versus 10% ( P > 0.10). Eighteen of 19 malignant ovarian neoplasms [prevalent = 4, incident = 6, risk-reducing salpingo-oophorectomy (RRSO) = 9] were detected via screening or RRSO. Among incident cases (which best reflect long-term screening performance), three of six invasive cancers were early-stage (I/II; 50% vs. 10% historical BRCA1 controls; P = 0.016). Six of nine RRSO-related cases were stage I. ROCA flagged three of six (50%) incident cases before CA125 exceeded 35 U/mL. Eight of nine patients with stages 0/I/II ovarian cancer were alive at last follow-up (median 6 years). Conclusions: For screened women at familial/genetic ovarian cancer risk, ROCA q3 months had better early-stage sensitivity at high specificity, and low yet possibly acceptable PPV compared with CA125 > 35 U/mL q6/q12 months, warranting further larger cohort evaluation. Clin Cancer Res; 23(14); 3628-37. ©2017 AACR
Predicting range shifts of African apes under global change scenarios
Aim: Modelling African great ape distribution has until now focused on current or past conditions, while future scenarios remain scarcely explored. Using an ensemble forecasting approach, we predicted changes in taxon-specific distribution under future scenarios of climate, land use and human populations for (1) areas outside protected areas (PAs) only (assuming complete management effectiveness of PAs), (2) the entire study region and (3) interspecies range overlap. Location: Tropical Africa. Methods: We compiled occurrence data (n = 5,203) on African apes from the IUCN A.P.E.S. database and extracted relevant climate-, habitat- and human-related predictors representing current and future (2050) conditions to predict taxon-specific range change under a best- and a worst-case scenario, using ensemble forecasting. Results: The predictive performance of the models varied across taxa. Synergistic interactions between predictors are shaping African ape distribution, particularly human-related variables. On average across taxa, a range decline of 50% is expected outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). Otherwise, an 85% range reduction is predicted to occur across study regions (94% worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 21% worst), with a slight increase in gains expected across study regions (66% best, 24% worst). Moreover, more than half of range losses and gains are predicted to occur outside PAs where interspecific ranges overlap. Main Conclusions: Massive range decline is expected by 2050, but range gain is uncertain as African apes will not be able to occupy these new areas immediately due to their limited dispersal capacity, migration lag and ecological constraints. Given that most future range changes are predicted outside PAs, Africa\u27s current PA network is likely to be insufficient for preserving suitable habitats and maintaining connected ape populations. Thus, conservation planners urgently need to integrate land use planning and climate change mitigation measures at all decision-making levels both in range countries and abroad
Large Prospective Study of Ovarian Cancer Screening in High-Risk Women: CA125 Cut-Point Defined by Menopausal Status
Previous screening trials for early detection of ovarian cancer in postmenopausal women have used the standard CA125 cut-point of 35 U/mL, the 98th percentile in this population yielding a 2% false positive rate, while the same cut-point in trials of premenopausal women results in substantially higher false positive rates. We investigated demographic and clinical factors predicting CA125 distributions, including 98th percentiles, in a large population of high-risk women participating in two ovarian cancer screening studies with common eligibility criteria and screening protocols
Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry
Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. In European ancestry samples, 14 genes were significantly associated (qâ<â0.05) with BC. Of those, two genes, FMNL3 (Pâ=â6.11âĂâ10 ) and AC058822.1 (Pâ=â1.47âĂâ10 ), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (Pâ=â1.31âĂâ10 ), demonstrating the importance of diversifying study cohorts. [Abstract copyright: © 2023. The Author(s).
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.
Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (ORâ=â2.44, Pâ=â0.034 and ORâ=â3.79; Pâ=â0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (ORâ=â1.96; Pâ=â0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCMâ/â patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
- âŠ