36 research outputs found

    Effects of Trace Metal Limitation on Oxidative Stress in Zooxanthellae and Its Role in Coral Bleaching

    Get PDF
    Coral bleaching has increased dramatically in frequency, severity, and geographic extent since the 1980s and this trend is anticipated to continue, causing major environmental and economic impacts in tropical regions. This bleaching - the loss by corals of their photosynthetic endosymbiotic dinoflagellates (zooxanthellae; Symbiodinium spp.) - involves increased oxidative stress arising from the combined effects of elevated temperature at high light intensities. Although the production of reactive oxygen species (ROS) in corals and phytoplankton is routine during daylight hours, the failure of antioxidant defenses in zooxanthellae becomes catastrophic under comparatively small changes in environmental temperature, because reef corals live close to their upper thermal limits. The mechanisms underlying this failure are not understood, but fall into two categories: (1) the temperature/irradiance conditions lie beyond the capacity for thermal acclimatization by corals and their endo-symbionts, or (2) the necessary enhancement of antioxidant defenses in zooxanthellae is hindered by nutrient deficiencies. In this project, the working hypothesis is that low ambient concentrations of dissolved iron, zinc, copper and perhaps manganese (Fe, Zn, Cu, and Mn) in oligotrophic tropical surface waters, combined with regulation of metal supply to zooxanthellae by the coral host, restrict the compensatory elevation of metal-dependent antioxidant enzymes with rising ROS production, and this resource limitation contributes to coral bleaching. This hypothesis will be investigated in three stages: with pure clonal cultures of zooxanthella isolates; in coral colony culture experiments; and in samples on areas of the Great Barrier Reef, Australia, observed to be susceptible or resistant to coral bleaching. The primary goals of the pure culture experiments are to 1) identify which of the known metals involved in antioxidant enzymes (Fe, Cu, Zn, Mn) are important in zooxanthellae, 2) determine the thresholds of metal nutrition (both in supply and intracellular metal quotas) below which onset of uncontrolled oxidative stress occurs in the zooxanthellae, and 3) ascertain whether these relationships differ significantly among bleaching sensitive and insensitive Symbiodinium species. In addition to verifying the findings in coral/algal symbioses, coral experiments will be used to determine whether the timing and magnitude of bleaching indicators change with metal nutrition, and whether bleaching-sensitive corals can become more resistant by increasing their metal quotas. The linkage between trace metals and antioxidant enzymes is well established in other biological systems but has not been examined in coral/zooxanthellar associations. The proposed work brings together experts in trace metal/ phytoplankton interactions, phytoplankton photo-physiology and oxidative stress, photo-oxidative defenses in reef corals, and molecular biology of marine symbioses to provide mechanistic understanding of coral bleaching, increasing predictive insights to the global trend of coral bleaching. This project will support the education and research training of two Ph.D. students who would test hypotheses integral to the work as parts of their dissertations. Two postdoctoral scientists will participate in the planning, management, and research of the project, providing opportunities to refine their professional development and their mentoring skills necessary for career success. Public lectures on corals and global climate change are planned. The findings will provide insights to the factors influencing the severity of bleaching events, and may suggest realistic mitigation strategies to minimize bleaching in localized environmentally or economically sensitive regions

    Effect of Phosphorus Amendments on Present Day Plankton Communities in Pelagic Lake Erie

    Get PDF
    To address questions regarding the potential impact of elevated total phosphorus (TP) inputs (due to relaxed regulations of TP loading), a series of TP enrichment experiments were conducted at pelagic stations in the 3 hydrologically distinct basins of Lake Erie. Results of nutrient assimilation measurements and assays for nutrient bioavailability suggest that the chemical speciation, and not concentration, of nitrogenous compounds may influence phytoplankton community structure; this in turn may lead to the selective proliferation of cyanobacteria in the eastern basin of the lake. Assays with cyanobacterial bioluminescent reporter systems for P and N availability as well as N-tot:P-tot assimilation ratios from on-deck incubation experiments support this work. Considered in the context of a microbial food web relative to a grazing food web, the results imply that alterations in current TP loading controls may lead to alterations in the phytoplankton community structure in the different basins of the Lake Erie system

    Evidence against global attention filters selective for absolute bar-orientation in human vision

    Full text link
    The finding that an item of type A pops out from an array of distractors of type B typically is taken to support the inference that human vision contains a neural mechanism that is activated by items of type A but not by items of type B. Such a mechanism might be expected to yield a neural image in which items of type A produce high activation and items of type B low (or zero) activation. Access to such a neural image might further be expected to enable accurate estimation of the centroid of an ensemble of items of type A intermixed with to-be-ignored items of type B. Here, it is shown that as the number of items in stimulus displays is increased, performance in estimating the centroids of horizontal (vertical) items amid vertical (horizontal) distractors degrades much more quickly and dramatically than does performance in estimating the centroids of white (black) items among black (white) distractors. Together with previous findings, these results suggest that, although human vision does possess bottom-up neural mechanisms sensitive to abrupt local changes in bar-orientation, and although human vision does possess and utilize top-down global attention filters capable of selecting multiple items of one brightness or of one color from among others, it cannot use a top-down global attention filter capable of selecting multiple bars of a given absolute orientation and filtering bars of the opposite orientation in a centroid task

    Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger's method

    No full text
    The pyrolysis kinetics of charring materials plays an important role in understanding material combustions especially for construction materials with complex degradation chemistry. Thermogravimetric analysis (TGA) is frequently used to study the heterogeneous kinetics of solid fuels; however, there is no agreed method to determine the pyrolysis scheme and kinetic parameters for charring polymers with multiple components and competing reaction pathways. This study develops a new technique to estimate the possible numbers of species and sub-reactions in pyrolysis by analyzing the second derivatives of thermogravimetry (DDTG) curves. The pyrolysis of a medium-density fiberboard (MDF) in nitrogen is studied in detail, and the DDTG curves are used to locate the temperature of the peak mass-loss rate for each sub-reaction. Then, on the basis of the TG data under multiple heating rates, Kissinger’s method is used to quickly find the possible range of values of the kinetic parameters (<i>A</i> and <i>E</i>). These ranges are used to accelerate the optimization of the inverse problem using a genetic algorithm (GA) for the kinetic and stoichiometric parameters. The proposed method and kinetic scheme found are shown to match the experimental data and are able to predict accurately results at different heating rates better than Kissinger’s method. Moreover, the search method (K–K method) is highly efficient, faster than the regular GA search alone. Modeling results show that, as the TG data available increase, the interdependence among kinetic parameters becomes weak and the accuracy of the first-order model declines. Furthermore, conducting TG experiment under multiple heating rates is found to be crucial in obtaining good kinetic parameters

    Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Harmful Algae 14 (2012): 271-300, doi:10.1016/j.hal.2011.10.025.Over the last decade, our understanding of the environmental controls on Pseudo-nitzschia blooms and domoic acid (DA) production has matured. Pseudo-nitzschia have been found along most of the world's coastlines, while the impacts of its toxin, DA, are most persistent and detrimental in upwelling systems. However, Pseudo-nitzschia and DA have recently been detected in the open ocean's high-nitrate, low-chlorophyll regions, in addition to fjords, gulfs and bays, showing their presence in diverse environments. The toxin has been measured in zooplankton, shellfish, crustaceans, echinoderms, worms, marine mammals and birds, as well as in sediments, demonstrating its stable transfer through the marine food web and abiotically to the benthos. The linkage of DA production to nitrogenous nutrient physiology, trace metal acquisition, and even salinity, suggests that the control of toxin production is complex and likely influenced by a suite of environmental factors that may be unique to a particular region. Advances in our knowledge of Pseudo-nitzschia sexual reproduction, also in field populations, illustrate its importance in bloom dynamics and toxicity. The combination of careful taxonomy and powerful new molecular methods now allow for the complete characterization of Pseudo-nitzschia populations and how they respond to environmental changes. Here we summarize research that represents our increased knowledge over the last decade of Pseudo-nitzschia and its production of DA, including changes in worldwide range, phylogeny, physiology, ecology, monitoring and public health impacts

    Multisensory numerosity judgments for visual and tactile stimuli

    Full text link
    To date, numerosity judgments have been studied only under conditions of unimodal stimulus presentation. It is therefore unclear whether the same limitations on correctly reporting the number of unimodal visual or tactile stimuli presented in a display might be expected under conditions in which participants have to count stimuli presented simultaneously in two or more different sensory modalities. In Experiment 1, we investigated numerosity judgments using both unimodal and bimodal displays consisting of one to six vibrotactile stimuli (presented over the body surface) and one to six visual stimuli (seen on the body via mirror reflection). Participants had to count the number of stimuli regardless of their modality of presentation. Bimodal numerosity judgments were significantly less accurate than predicted on the basis of an independent modality-specific resources account, thus showing that numerosity judgments might rely on a unitary amodal system instead. The results of a second experiment demonstrated that divided attention costs could not account for the poor performance in the bimodal conditions of Experiment 1. We discuss these results in relation to current theories of cross-modal integration and to the cognitive resources and/or common higher order spatial representations possibly accessed by both visual and tactile stimuli.

    Yeast Cell as a Bio-Model for Measuring the Toxicity of Fish-Killing Flagellates

    No full text
    Harmful algal blooms are a significant environmental problem. Cells that bloom are often associated with intercellular or dissolved toxins that are a grave concern to humans. However, cells may also excrete compounds that are beneficial to their competition, allowing the cells to establish or maintain cells in bloom conditions. Here, we develop a yeast cell assay to assess whether the bloom-forming species can change the toxicity of the water environment. The current methods of assessing toxicity involve whole organisms. Here, yeast cells are used as a bioassay model to evaluate eukaryotic cell toxicity. Yeast is a commonly used, easy to maintain bioassay species that is free from ethical concerns, yet is sensitive to a wide array of metabolic and membrane-modulating agents. Compared to methods in which the whole organism is used, this method offers rapid and convenient cytotoxicity measurements using a lower volume of samples. The flow cytometer was employed in this toxicology assessment to measure the number of dead cells using alive/dead stain analysis. The results show that yeast cells were metabolically damaged after 1 h of exposure to our model toxin-producing euryhaline flagellates (Heterosigma akashiwo and Prymnesium parvum) cells or extracts. This amount was increased by extending the incubation time
    corecore