43 research outputs found

    The Glauber model and the heavy ion reaction cross section

    Get PDF
    We reexamine the Glauber model and calculate the total reaction cross section as a function of energy in the low and intermediate energy range, where many of the corrections in the model, are effective. The most significant effect in this energy range is by the modification of the trajectory due to the Coulomb field. The modification in the trajectory due to nuclear field is also taken into account in a self consistent way. The energy ranges in which particular corrections are effective, are quantified and it is found that when the center of mass energy of the system becomes 30 times the Coulomb barrier, none of the trajectory modification to the Glauber model is really required. The reaction cross sections for light and heavy systems, right from near coulomb barrier to intermediate energies have been calculated. The exact nuclear densities and free nucleon-nucleon (NN) cross sections have been used in the calculations. The center of mass correction which is important for light systems, has also been taken into account. There is an excellent agreement between the calculations with the modified Glauber model and the experimental data. This suggests that the heavy ion reactions in this energy range can be explained by the Glauber model in terms of free NN cross sections without incorporating any medium modification.Comment: RevTeX, 21 pages including 9 Postscript figures, submitted to Phys. Rev.

    Calculations of 6^{6}He+p elastic scattering cross sections using folding approach and high-energy approximation for the optical potential

    Full text link
    Calculations of microscopic optical potentials (OP's) (their real and imaginary parts) are performed to analyze the 6^6He+p elastic scattering data at a few tens of MeV/nucleon (MeV/N). The OP's and the cross sections are calculated using three model densities of 6^6He. Effects of the regularization of the NN forces and their dependence on nuclear density are investigated. Also, the role of the spin-orbit terms and of the non-linearity in the calculations of the OP's, as well as effects of their renormalization are studied. The sensitivity of the cross sections to the nuclear densities was tested and one of them that gives a better agreement with the data was chosen.Comment: 13 pages, 11 figures, to be published in Eur. Phys. J.

    Double neutron/proton ratio of nucleon emissions in isotopic reaction systems as a robust probe of nuclear symmetry energy

    Get PDF
    The double neutron/proton ratio of nucleon emissions taken from two reaction systems using four isotopes of the same element, namely, the neutron/proton ratio in the neutron-rich system over that in the more symmetric system, has the advantage of reducing systematically the influence of the Coulomb force and the normally poor efficiencies of detecting low energy neutrons. The double ratio thus suffers less systematic errors. Within the IBUU04 transport model the double neutron/proton ratio is shown to have about the same sensitivity to the density dependence of nuclear symmetry energy as the single neutron/proton ratio in the neutron-rich system involved. The double neutron/proton ratio is therefore more useful for further constraining the symmetry energy of neutron-rich matter

    Study on the One-Proton Halo Structure in 23^{23}Al

    Full text link
    The Glauber theory has been used to investigate the reaction cross section of proton-rich nucleus 23^{23}Al. A core plus a proton structure is assumed for 23^{23}Al. HO-type density distribution is used for the core while the density distribution for the valence proton is calculated by solving the eigenvalue problem of Woods-Saxon potential. The transparency function in an analytical expression is obtained adopting multi-Gaussian expansion for the density distribution. Coulomb correction and finite-range interaction are introduced. This modified Glauber model is apt for halo nuclei. A dominate s-wave is suggested for the last proton in 23^{23}Al from our analysis which is possible in the RMF calculation.Comment: 4 pages, 4 figure

    A precise measurement of the deuteron elastic structure function A(Q^2)

    Get PDF
    The A(Q^2) structure function in elastic electron-deuteron scattering was measured at six momentum transfers Q^2 between 0.66 and 1.80 (GeV/c)^2 in Hall C at Jefferson Laboratory. The scattered electrons and recoil deuterons were detected in coincidence, at a fixed deuteron angle of 60.5 degrees. These new precise measurements resolve discrepancies between older sets of data. They put significant constraints on existing models of the deuteron electromagnetic structure, and on the strength of isoscalar meson exchange currents.Comment: 3 LaTeX pages plus 2 PS figure

    Electromagnetic Dissociation as a Tool for Nuclear Structure and Astrophysics

    Get PDF
    Coulomb dissociation is an especially simple and important reaction mechanism. Since the perturbation due to the electric field of the (target) nucleus is exactly known, firm conclusions can be drawn from such measurements. Electromagnetic matrixelements and astrophysical S-factors for radiative capture processes can be extracted from experiments. We describe the basic elements of the theory of nonrelativistic and relativistic electromagnetic excitation with heavy ions. This is contrasted to electromagnetic excitation with leptons (electrons), with their small electric charge and the absence of strong interactions. We discuss various approaches to the study of higher order electromagnetic effects and how these effects depend on the basic parameters of the experiment. The dissociation of neutron halo nuclei is studied in a zero range model using analytical methods. We also review ways how to treat nuclear interactions, show their characteristics and how to avoid them (as far as possible). We review the experimental results from a theoretical point of view. Of special interest for nuclear structure physics is the appearence of low lying electric dipole strength in neutron rich nuclei. Applications of Coulomb dissociation to some selected radiative capture reactions relevant for nuclear astrophysics are discussed. The Coulomb dissociation of 8B is relevant for the solar neutrino problem. The potential of the method especially for future investigations of (medium) heavy exotic nuclei for nuclear structure and astrophysics is explored. We conclude that the Coulomb dissociation mechanism is theoretically well understood, the potential difficulties are identified and can be taken care of. Many interesting experiments have been done in this field and many more are expected in the future.Comment: review article accepted for publication in "Prog. in Part. and Nucl. Physics", 75 pages, 31 figure

    Isospin Physics in Heavy-Ion Collisions at Intermediate Energies

    Get PDF
    In nuclear collisions induced by stable or radioactive neutron-rich nuclei a transient state of nuclear matter with an appreciable isospin asymmetry as well as thermal and compressional excitation can be created. This offers the possibility to study the properties of nuclear matter in the region between symmetric nuclear matter and pure neutron matter. In this review, we discuss recent theoretical studies of the equation of state of isospin-asymmetric nuclear matter and its relations to the properties of neutron stars and radioactive nuclei. Chemical and mechanical instabilities as well as the liquid-gas phase transition in asymmetric nuclear matter are investigated. The in-medium nucleon-nucleon cross sections at different isospin states are reviewed as they affect significantly the dynamics of heavy ion collisions induced by radioactive beams. We then discuss an isospin-dependent transport model, which includes different mean-field potentials and cross sections for the proton and neutron, and its application to these reactions. Furthermore, we review the comparisons between theoretical predictions and available experimental data. In particular, we discuss the study of nuclear stopping in terms of isospin equilibration, the dependence of nuclear collective flow and balance energy on the isospin-dependent nuclear equation of state and cross sections, the isospin dependence of total nuclear reaction cross sections, and the role of isospin in preequilibrium nucleon emissions and subthreshold pion production.Comment: 101 pages with embedded epsf figures, review article for "International Journal of Modern Physics E: Nuclear Physics". Send request for a hard copy to 1/author

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix
    corecore