293 research outputs found

    Surface wave mode coupling and the validity of the path average approximation in surface waveform inversions: an empirical assessment

    Get PDF
    We employ an empirical approach to study the phenomenon of surface wave mode conversion due to lateral heterogeneity, and, as an example, assess its impact on a specific waveform inversion methodology used for surface wave tomography. Finite difference modelling in 2-D media, using a method that allows modelling of a single surface wave mode at a time, is combined with frequency domain decomposition of the wavefield onto a basis of local mode eigenfunctions, to illuminate mode conversion as a function of frequency and heterogeneity parameters. Synthetic waveforms generated by the modelling are inverted to study the effects of mode conversion on the inversion process. For heterogeneities in the upper mantle depth range of ∼40–300 km, we find that heterogeneity strengths of about 5 per cent (with sharp lateral boundaries), or lateral boundary length scales of 10–15 times the seismic wavelength (with 10 per cent maximum strength) produce significant mode conversion at periods of 30 s and shorter. These are significant in the sense that, depending on source strength, converted mode amplitudes can be well above typical noise levels in seismology. Correspondingly, waveform inversion with higher modes reveals the inadequacy of the path average approximation at these periods, with the potential for errors as large as 7 per cent in inferred group velocities, which will translate into errors in the inverted shear-velocity structure

    Shocks in supersonic sand

    Full text link
    We measure time-averaged velocity, density, and temperature fields for steady granular flow past a wedge and calculate a speed of granular pressure disturbances (sound speed) equal to 10% of the flow speed. The flow is supersonic, forming shocks nearly identical to those in a supersonic gas. Molecular dynamics simulations of Newton's laws and Monte Carlo simulations of the Boltzmann equation yield fields in quantitative agreement with experiment. A numerical solution of Navier-Stokes-like equations agrees with a molecular dynamics simulation for experimental conditions excluding wall friction.Comment: 4 pages, 5 figure

    Variants in the Mannose-binding Lectin Gene MBL2 do not Associate With Sepsis Susceptibility or Survival in a Large European Cohort

    Get PDF
    We use a large cohort of immune competent adults to analyze the influence of MBL2 genetic variants on sepsis susceptibility and survival. We find no significant associations with the 4 main functional single nucleotide polymorphisms in MBL2, or any combination of genotype

    High-resolution ab initio three-dimensional X-ray diffraction microscopy

    Full text link
    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte

    Convective-reactive proton-C12 combustion in Sakurai's object (V4334 Sagittarii) and implications for the evolution and yields from the first generations of stars

    Full text link
    Depending on mass and metallicity as well as evolutionary phase, stars occasionally experience convective-reactive nucleosynthesis episodes. We specifically investigate the situation when nucleosynthetically unprocessed, H-rich material is convectively mixed with a He-burning zone, for example in convectively unstable shell on top of electron-degenerate cores in AGB stars, young white dwarfs or X-ray bursting neutron stars. Such episodes are frequently encountered in stellar evolution models of stars of extremely low or zero metal content [...] We focus on the convective-reactive episode in the very-late thermal pulse star Sakurai's object (V4334 Sagittarii). Asplund etal. (1999) determined the abundances of 28 elements, many of which are highly non-solar, ranging from H, He and Li all the way to Ba and La, plus the C isotopic ratio. Our simulations show that the mixing evolution according to standard, one-dimensional stellar evolution models implies neutron densities in the He that are too low to obtain a significant neutron capture nucleosynthesis on the heavy elements. We have carried out 3D hydrodynamic He-shell flash convection [...] we assume that the ingestion process of H into the He-shell convection zone leads only after some delay time to a sufficient entropy barrier that splits the convection zone [...] we obtain significantly higher neutron densities (~few 10^15 1/cm^3) and reproduce the key observed abundance trends found in Sakurai's object. These include an overproduction of Rb, Sr and Y by about 2 orders of magnitude higher than the overproduction of Ba and La. Such a peculiar nucleosynthesis signature is impossible to obtain with the mixing predictions in our one-dimensional stellar evolution models. [...] We determine how our results depend on uncertainties of nuclear reaction rates, for example for the C13(\alpha, n)O16 reaction.Comment: ApJ in press, this revision contains several changes that improve clarity of presentation reflecting the suggestions made by the referee; this version represents no change in substance compared to version 1; some technical material has been moved to an appendix; an additional appendix deals in more detail with the combustion time scales; this version is practically identical to the ApJ versio

    The geography of recent genetic ancestry across Europe

    Get PDF
    The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.Comment: Full size figures available from http://www.eve.ucdavis.edu/~plralph/research.html; or html version at http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm

    Switching of the electron-phonon interaction in 1T-VSe2 assisted by hot carriers

    Get PDF
    Funding: We gratefully acknowledge funding from VILLUM FONDEN through the Young Investigator Program (Grant. No.15375) and the Centre of Excellence for Dirac Materials (Grant. No. 11744), the Danish Council for Independent Research, Natural Sciences under the Sapere Aude program (Grant Nos. DFF-9064-00057B and DFF-6108-00409) and the Aarhus University Research Foundation. This work is also supported by National Research Foundation (NRF) grants funded by the Korean government (nos. NRF-2020R1A2C200373211 and 2019K1A3A7A09033389) and by the International MaxPlanck Research School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM). The authors also acknowledge The Royal Society and The Leverhulme Trust. R.S acknowledges financial support provided by the Ministry of Science and Technology in Taiwan under project number MOST-108-2112-M-001-049-MY2 & MOST 109-2124-M-002-001 and Sinica funded i-MATE financial Support AS-iMATE-109-13. Access to the Artemis Facility was funded by STFC. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.We apply an intense infrared laser pulse in order to perturb the electronic and vibrational states in the three-dimensional charge density wave material 1T-VSe2. Ultrafast snapshots of the light-induced hot carrier dynamics and non-equilibrium quasiparticle spectral function are collected using time- and angle-resolved photoemission spectroscopy. The hot carrier temperature and time-dependent electronic self-energy are extracted from the time-dependent spectral function, revealing that incoherent electron-phonon interactions heat the lattice above the charge density wave critical temperature on a timescale of (200 ± 40)~fs. Density functional perturbation theory calculations establish that the presence of hot carriers alters the overall phonon dispersion and quenches efficient low-energy acoustic phonon scattering channels, which results in a new quasi-equilibrium state that is experimentally observed.Publisher PDFPeer reviewe

    Variants in the Mannose-binding Lectin Gene MBL2 do not Associate With Sepsis Susceptibility or Survival in a Large European Cohort.

    Get PDF
    BACKGROUND: Sepsis is an increasingly common condition, which continues to be associated with unacceptably high mortality. A large number of association studies have investigated susceptibility to, or mortality from, sepsis for variants in the functionally important immune-related gene MBL2. These studies have largely been underpowered and contradictory. METHODS: We genotyped and analyzed 4 important MBL2 single nucleotide polymorphisms (SNPs; rs5030737, rs1800450, rs1800451, and rs7096206) in 1839 European community-acquired pneumonia (CAP) and peritonitis sepsis cases, and 477 controls from the United Kingdom. We analyzed the following predefined subgroups and outcomes: 28-day and 6 month mortality from sepsis due to CAP or peritonitis combined, 28-day mortality from CAP sepsis, peritonitis sepsis, pneumococcal sepsis or sepsis in younger patients, and susceptibility to CAP sepsis or pneumococcal sepsis in the United Kingdom. RESULTS: There were no significant associations (all P-values were greater than .05 after correction for multiple testing) between MBL2 genotypes and any of our predefined analyses. CONCLUSIONS: In this large, well-defined cohort of immune competent adult patients, no associations between MBL2 genotype and sepsis susceptibility or outcome were identified.The GenOSept study was supported by the European Union and benefits from the 6th framework programme of Research and Technology Development funding. This study was also funded by the GRACE project (6th Framework Programme of the European Commission Reference: LSHM-CT-2005-518226) and the Wellcome Trust Core Award (Grant Number 090532/Z/09/Z). We acknowledge the support of the National Institute for Health Research (NIHR), through the Comprehensive Clinical Research Network for patient recruitment in the UK and A. C. G. as an NIHR Clinician Scientist award holderThe GenOSept study was supported by the European Union and benefits from the 6th framework programme of Research and Technology Development funding. This study was also funded by the GRACE project (6th Framework Programme of the European Commission Reference: LSHM-CT-2005-518226) and the Wellcome Trust Core Award (Grant Number 090532/Z/09/Z). We acknowledge the support of the National Institute for Health Research (NIHR), through the Comprehensive Clinical Research Network for patient recruitment in the UK and A. C. G. as an NIHR Clinician Scientist award holde
    corecore