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S U M M A R Y
We employ an empirical approach to study the phenomenon of surface wave mode conversion
due to lateral heterogeneity, and, as an example, assess its impact on a specific waveform
inversion methodology used for surface wave tomography. Finite difference modelling in 2-D
media, using a method that allows modelling of a single surface wave mode at a time, is
combined with frequency domain decomposition of the wavefield onto a basis of local mode
eigenfunctions, to illuminate mode conversion as a function of frequency and heterogeneity
parameters. Synthetic waveforms generated by the modelling are inverted to study the effects of
mode conversion on the inversion process. For heterogeneities in the upper mantle depth range
of ∼40–300 km, we find that heterogeneity strengths of about 5 per cent (with sharp lateral
boundaries), or lateral boundary length scales of 10–15 times the seismic wavelength (with
10 per cent maximum strength) produce significant mode conversion at periods of 30 s and
shorter. These are significant in the sense that, depending on source strength, converted mode
amplitudes can be well above typical noise levels in seismology. Correspondingly, waveform
inversion with higher modes reveals the inadequacy of the path average approximation at these
periods, with the potential for errors as large as 7 per cent in inferred group velocities, which
will translate into errors in the inverted shear-velocity structure.

Key words: Numerical modelling; Waveform inversion; Seismic tomography; Surface waves
and free oscillations; Wave propagation.

1 I N T RO D U C T I O N

Global tomographic models of the mantle (e.g. Debayle & Ri-
card 2012; Priestley & McKenzie 2013; Schaeffer & Lebedev 2013;
French & Romanowicz 2014; Moulik & Ekström 2014) are now
fairly consistent in terms of large-scale isotropic shear velocity
structure, with differences between models being most pronounced
for small-scale features and at greater depths. Since surface waves
are an integral part of the Vs tomography toolkit, it is clear that the
next generation of global Vs models will come from incorporating
higher frequency surface waves and higher mode numbers than are
typically used today. Until fully numerical solutions of the forward
problem become the norm, the challenge in going to higher fre-
quencies and higher modes is largely theoretical, that is, it lies in
maintaining the accuracy of the forward solution, whilst keeping
the inverse problem tractable.

Ray theory for surface waves has played a dominant role in sur-
face wave tomography, whether in its simple linearized form com-

monly recognized as the great-circle path (GCP) approximation
(Woodhouse & Dziewonski 1984) or the more accurate full ray the-
ory also referred to as the WKBJ approximation (Woodhouse 1974;
Babich et al. 1976; Yomogida 1985; Tromp & Dahlen 1992a,b).
There are two limitations of ray theory. First, it is an infinite fre-
quency approximation that cannot account for the finite zone of sen-
sitivity of travelling waves and second, it is only valid for smoothly
varying media where length scales of variations are much larger
than the seismic wavelength. The former has led to much debate
in the general seismological community (e.g. Montelli et al. 2004;
Van Der Hilst & De Hoop 2005) and for surface waves, it has
been shown that finite frequency effects can be accounted for by
proper regularization of ray-theory based inversions, provided that
path coverage is sufficiently dense (Sieminski et al. 2004; Levshin
et al. 2005; Trampert & Spetzler 2006). Moreover, finite frequency
effects are less important as we tend towards higher frequencies.
The second limitation, with implications for along-path heterogene-
ity in Earth structure, has also been studied extensively, at least in
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terms of assessing the validity of the GCP approximation (Lay &
Kanamori 1985; Woodhouse & Wong 1986; Pollitz 1994; Wang
et al. 1998; Ritzwoller et al. 2002). Within the realm of along-path
effects, there is another, less understood issue not accounted for by
ray theory—that of interactions or coupling between surface wave
modes. Unlike the aforementioned effects, mode coupling is ex-
acerbated with higher frequencies (Meier et al. 1997) and higher
modes, so it is worth studying on its own.

Most surface wave tomography relies on first extracting disper-
sion information from the observed surface waveforms by compar-
ing them with waveforms commonly synthesized by the summation
of modes computed in a laterally homogeneous reference model. In
such a model, the individual modes propagate independently; how-
ever, in more realistic heterogeneous Earth models, surface wave
propagation can be more complex. Dispersion can still be extracted
from the observed waveforms by comparing them with synthetic
waveforms computed for a laterally homogeneous reference model
by modal summation, but in this case, the modes are coupled by
the lateral heterogeneity (Maupin 2007). This represents a compu-
tational issue necessitated by an inability to compute the modes of
more complicated Earth models, and is distinct from mode interfer-
ence (e.g. Thatcher & Brune 1969). Mode interference can exist in
a homogeneous or heterogeneous Earth model, but the mode cou-
pling we describe is present only in a heterogeneous Earth model.
In this paper, we focus on mode coupling—in the sense of mode
conversion of local modes (see Maupin 2007)—but are aware that
mode interference is another issue with multi-mode surface wave
analysis.

The theory describing mode coupling was first developed, in
2-D, by Kennett (1984). The theory was later extended to 3-D
(Tromp 1994; Kennett 1998), but never found mainstream use in
large-scale data analysis or inversions due to prohibitive computa-
tional requirements. On the other hand, in the realm of body wave
modelling by mode summation, the importance of mode coupling
whether using normal modes (Li & Tanimoto 1993; Li & Romanow-
icz 1995) or surface wave modes (Marquering & Snieder 1995;
Marquering et al. 1996) is widely acknowledged and methods ac-
counting for mode coupling have been extensively used (Li & Ro-
manowicz 1996; Marquering & Snieder 1996; Zhao & Jordan 1998;
Mégnin & Romanowicz 2000; Gung et al. 2003; Panning &
Romanowicz 2006; Lekić & Romanowicz 2011; French et al. 2013;
French & Romanowicz 2014). Just as body wave phases modelled
by mode summation have unrealistic, laterally homogeneous sensi-
tivity kernels if mode coupling is ignored, so too for surface waves,
the presence of along-path heterogeneity renders phase sensitiv-
ity kernels laterally heterogeneous (see Maupin 2007)—an effect
which cannot be described by WKBJ theory. Yet the importance of
mode coupling for exclusive modelling of surface waves (discount-
ing those studies, as in references above, where surface waves are
a subset of the data used) has received much less attention and it
continues to be neglected in the popular multimode surface wave to-
mography techniques in existence today (e.g. Cara & Lévêque 1987;
Nolet 1990; Gee & Jordan 1992; van Heijst & Woodhouse 1997;
Ekström et al. 1997). The individual waveform inversions that un-
derlie these techniques are based on forward modelling that cannot
account for mode coupling, hence the path average approximation
implicit in them is valid only in so far as mode conversions (if any)
do not corrupt the measurements made on the data to extract dif-
ferent modes. As a case study we investigate the Cara & Lévêque
(1987, hereafter CL1987) waveform inversion method.

Zhou et al. (2004) used sensitivity kernels for surface wave ob-
servables to conclude that mode coupling was negligible at the

typical resolution scales of global surface wave tomography. How-
ever their analysis was restricted to the fundamental mode only.
In this paper we take a very simple, empirical approach towards
quantifying mode coupling and gaining a practical understanding
of when the path average approximation is rendered invalid by it. In
particular, we examine synthetic seismograms generated by finite
difference (FD) forward modelling in 2-D media with varying de-
grees of lateral heterogeneity. Restricting the study to 2-D models
ensures that other wave propagation effects (off-path scattering etc.)
are eliminated so that mode conversion can be studied unambigu-
ously. Mode coupling is studied in the simplest sense of conversion
among local modes.

2 M O D E L L I N G A N D A NA LY S I S
M E T H O D S

2.1 Finite difference modelling

Synthetic seismograms in 2-D media are computed using a hybrid
algorithm that combines the 2.5-D FD approach to solving the wave
equation described in Roecker et al. (2010) with the source specifi-
cation of Bielak et al. (2003) as implemented by Baker & Roecker
(2014). We adopted this algorithm because it was relatively easy
to adapt the code to the objectives of this study. Adapting the
Bielak et al. (2003) approach implies specifying the source only
at the boundary and computing the total field within the heteroge-
neous medium, as opposed to computing only a scattered field (with
sources internal to the medium) which was the approach of Roecker
et al. (2010). Fortunately, the former can be easily adapted from the
Baker & Roecker (2014) implementation without sacrificing any of
the multimode capabilities of the latter.

This modified technique still requires the specification of a back-
ground wavefield in the region outside the model, and to do so
we use the method of Gomberg & Masters (1988) to compute the
response of a 1-D medium to a seismic excitation. This method
uses a propagator matrix technique to solve the eigenproblem for
surface wave dispersion, combined with the Mendiguren (1977)
description of surface wave radiation, to obtain Green’s functions
for a specified moment-tensor source. The 2.5-D FD algorithm is
a frequency-domain approach; time-domain seismograms are gen-
erated after convolving the total field with a Gaussian source time
function.

As our study is a new application of this algorithm, we subjected
it to a battery of tests to ensure that the results would be sufficiently
accurate for the analysis presented here. A detailed review of these
tests appears in Appendix A, and as a general conclusion we found
that the numerical errors were acceptably small. One result worth
noting involved the combination of a rotated grid and mass lumping
adapted by Roecker et al. (2010) from the work of Jo et al. (1996)
and Štekl & Pratt (1998), to reduce the density of grid points re-
quired to mitigate numerical anisotropy and dispersion. We found
that their optimized weighting of masses and grids, while adequate
for short distances (<1000 km), does not sufficiently reduce dis-
persion at distances we seek to model in this study (see Fig. A2).
While it may be possible to re-evaluate their optimal coefficients for
denser grid spacing (their study was geared towards 4 grid points
per minimum wavelength) our tests showed that we could achieve
an acceptably small level of numerical error by weighting the ro-
tated grids more or less equally (the actual weights are 0.6 and 0.4)
and increasing the grid density to 12 points per minimum wave-
length while, somewhat surprisingly, lumping only the four ‘nearest
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Figure 1. Example of wavefield fitting demonstrated with a known wavefield consisting of the Rayleigh wave fundamental mode and first four overtones,
computed analytically in a laterally homogeneous model: (a) vertical displacement everywhere in the model at 50 s period; only the real part of the total field is
shown and the thin rectangle highlights the part of the field used in part (b). (b) Fitting of the field at a single lateral position (500 km) in the model—left panel
shows the total field along with the obtained fit, right panel shows the normalized Rayleigh mode eigenfunctions used to obtain the fit.

neighbour’ masses and eliminating the contribution from the mass
at the centre of the nine-point star. Though the resulting number of
variables is significantly greater with these choices, the computation
remains tractable.

2.2 Analysis of modelling results

In order to quantitatively study the phenomenon of mode conver-
sion, it is necessary to know the modal constitution of a wavefield
before/after propagation through a heterogeneity; for this a method
is required to analyse and deconstruct the total field obtained by
forward modelling.

2.2.1 Measurement of individual mode amplitudes

The forward solver used in this study works in the frequency do-
main. We exploit the fact that the field is available everywhere in the
model and at each frequency, by using an unconventional analysis
tool: least-squares fitting of the total field by linear superposition of
surface wave modes. This idea is similar to that of Szelwis (1983),
and in the context of studying a field that includes scattering from
heterogeneities, is founded on assuming that the body-wave com-
ponent of the scattered field is minor. The total field � is written as
a sum of modes

�(ω, x, z) =
∑

m

am(ω)Em(ω, z)eikm (ω)x (1)

where x = lateral position in model; � = vertical profile of single
component (vertical or radial for Rayleigh, transverse for Love
waves) of wavefield at frequency ω, taken at location x in 2-D model;
Em = corresponding displacement component of eigenfunction of
mode m at frequency ω in background model; am = amplitude or
participation factor of mode m; km = wavenumber of mode m at
frequency ω in background model.

Since the mode eigenfunctions represent the amplitude of particle
motion as a function of depth, for clarity we use the term mode
participation factor (MPF) to denote the strength of each mode in
the total field. Determination of the MPFs am(ω) can be cast as an
optimization problem of fitting �(ω, x, z) with Em(ω, z). Combining

the participation factor and phase terms in (1), gives

�(ω, x, z) =
∑

m

Am(ω, x)Em(ω, z) (2)

where

Am(ω, xi ) = am(ω)eikm xi .

Rewriting (2) in matrix notation,

�(ω, x) = E(ω)A(ω, x).

The above equation is solved for A in the least-squares sense by
solving

ET EA = ET � (3)

which yields the coefficients Am at a single location x. An example
of this is shown in Fig. 1. Eq. (3) is solved for a discrete number
of points at locations xi to get a set of coefficients Am(ω, xi). The
modulus of these coefficients should be the same at each location
(in a laterally homogeneous model), which suggests the use of the
following estimator for the MPFs:

âm(ω) = |Am(ω, xi )| (4)

where the overbar represents the mean over the set of locations xi

chosen to span one complete wavelength (longest wavelength in case
of multiple modes). Variations in |Am| over the set xi are a measure
of the error (�am) in the estimate for am(ω) (the standard deviation
is used as the error estimate). The entire procedure is implemented
independently for each frequency to yield the complete modal make-
up of the total wavefield.

Through simple tests in laterally homogeneous (1-D) media, we
have confirmed that this method is effective and accurate—it re-
produces exactly the known individual MPFs (provided that funda-
mental influences on amplitude, namely anelastic attenuation and
geometrical spreading, are suitably taken care of). In case of 2-D
models, the obvious caveat associated with this method is that it
can only be applied to parts of the model which are laterally homo-
geneous, so that the local eigenfunctions used for wavefield fitting
are consistent over the set of locations xi in eq. (4). The tests with
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Figure 2. Schematic to illustrate the study method: there is a 2-D model discretized on a uniform grid in both directions, and a teleseismic earthquake source
lying outside the model. The 2-D model consists of a 1-D (laterally homogeneous) background medium with a heterogeneity imposed on it as a percentage
perturbation. The model in the source region as well as between the source and the 2-D model is equal to the background medium. Description of the canonical
study model: it consists of a 1200 km wide, +10 per cent perturbation to the background model, in the depth range 44–304 km. The perturbation starts at a
lateral distance of 120 km in the model. To ensure vertical smoothness, which is relevant for the inversions of Section 4 (see vertical correlation length in
CL1987), the perturbation has linear vertical tapers at the top and bottom, of thickness 44 km and 100 km respectively. There are no lateral tapers, which means
the lateral boundaries are sharp. Note that the velocities shown are in flattened coordinates and only the top 600 km of the model are shown.

simple 2-D models presented in Appendix A serve to validate not
only the FD solutions but also this analysis technique.

2.2.2 Energy distribution among modes

The amplitudes obtained as described above depend on how the
eigenfunctions used for wavefield fitting are normalized. In this
study we use eigenfunctions normalized to unit surface displace-
ment, hence the MPFs obtained are a measure of each mode’s
surface displacement. To calculate energies of individual modes,
we compute mode amplitudes with respect to eigenfunctions nor-
malized such that each mode transports unit energy. We do this
indirectly by computing the surface wave orthogonality product de-
fined by Herrera (1964), simplified for 2-D wave propagation with
x-axis along the propagation direction:

1

2

∫ ∞

0

∑
q=x,y,z

[
ul

qσ
m∗
xq − um∗

q σ l
xq

]
dz = N 2

mδml (5)

where uq and σ xq are the components of displacement and stress
respectively, on a surface normal to the propagation direction, and
l and m are mode indices. N is a constant and δml is the Kronecker
delta. Hererra’s scalar product is directly related to energy flux
carried by a mode, because flux is given by stress × velocity and
in the frequency domain, velocity and displacement are separated
only by a factor of iω, that is, the energy flux is

F = iωN 2. (6)

This leads to the following integrals (here we have used the Aki &
Richards (2002) nomenclature for surface wave eigenfunctions and
dropped the mode index for clarity):

F = ωk

∫ ∞

0
μl2

1 dz, for Love modes

F = ω

∫ ∞

0
[σxxr1 − r2r3] dz, for Rayleigh modes (7)

which are easily evaluated numerically using Simpson’s rule.
Energy-normalized eigenfunctions φE are related to arbitrarily nor-

malized eigenfunctions φu as φE
m = φu

m/
√

Fm ; hence once the am-
plitudes of modes relative to φu are known (e.g. am in previous
section), their amplitudes em relative to φE are simply

em = am

√
Fm

The set of amplitudes em is all that is needed to determine the
modewise energy distribution of a wavefield because energy carried
by mode m is simply |em|2. In this paper, energy of modes refers to
energy flux carried by modes and it is derived from FD modelling
results by first computing am by the method of Section 2.2.1, then
scaling by the appropriate norms to get em.

3 F O RWA R D M O D E L L I N G

Equipped with a tested FD solver, we proceed to analyse the nature
and extent of mode conversion of Rayleigh and Love waves in a
variety of 2-D models that contain lateral heterogeneities at scales
currently resolvable through surface wave tomography. Given a
single surface wave mode impinging on a region of lateral hetero-
geneity, the objective of our numerical experiments is to determine
the modal content of the wavefield after transmission through the
heterogeneity. Here the incident surface waves are produced by an
earthquake source and the localized structural heterogeneity is at
teleseismic distances (Fig. 2). This approach involves a number
of variables including the specific source mechanism, the back-
ground model (on which heterogeneity is imposed) and the nature
of the heterogeneity itself. However, for the stated objective, the first
two are dummy controls—mode conversion is a wave propagation
phenomenon, unrelated to wave excitation, and it is governed by
gradients in structure rather than the actual structure itself. There-
fore in this paper we present results using a single background
model, and a single earthquake source chosen for convenience.
The 1-D background model has its mantle structure derived from
PREM (the 220 km discontinuity in PREM is smoothed), and a
single-layer crust (with a view towards simplifying inversion of the
simulated data in Section 4), of thickness 28 km. The teleseismic
source corresponds to the 16/05/2006 Mw 7.4 event in the Kermadec

Downloaded from https://academic.oup.com/gji/article-abstract/211/2/1077/4082213
by University of Cambridge user
on 01 March 2018



An assessment of surface wave mode coupling 1081

Islands region; chosen for its ∼150 km depth, which ensures exci-
tation of the fundamental mode as well as first five overtones over
the frequency range of interest, and its long source time function,
which ensures that the source spectrum (and therefore that of the
background wavefield) does not have appreciable amplitude at fre-
quencies higher than are modelled by FDs. Any other source may
be used without fundamentally affecting the results of this paper.

In this way the experiment reduces to studying the effect of vari-
ations in the nature of the lateral heterogeneity only. Even so, a
large number of possibilities exist—the shape, lateral extent, ver-
tical extent, strength, sharpness and depth of the perturbation can
all be varied independently. A further simplification is made in that
only the strength, lateral extent (width) and the sharpness of the
perturbation are varied. While all geometrical parameters of the
heterogeneity would affect mode conversion, the essential physics
of the process can be captured by varying only the three aforemen-
tioned parameters (strength, width, sharpness), provided the rest
are sensibly chosen to approximate realistic upper mantle hetero-
geneities. Therefore we define a canonical study model (see Fig. 2),
from which all other study models are derived by varying any com-
bination of the three chosen parameters.

3.1 Experiment details and analysis of output

FD modelling is done with a model size of 4000 km (width) by
2800 km (depth) using a grid spacing of 4 km. Modelling is re-
stricted to a highest frequency of 0.08 Hz (12.5 s period), which for
the chosen grid corresponds to a sampling density of ∼12–14 grid
points per shortest wavelength (GPPSW). The numerical experi-
ment (Fig. 2) is done separately for each incident mode—from the
fundamental to the fifth overtone—and separately for Rayleigh and
Love waves. Attenuation and geometrical spreading are excluded
from the modelling (turned off) to allow the implementation of the
wavefield fitting technique described in Section 2.2 without having
to worry about how far beyond the heterogeneity the measurements
are made. The earthquake source, which generates the background
(incident) field, is an arbitrary distance outside the model.

To quantify the results of each simulation we compute the trans-
mission surface ratio, Y (see Appendix A), and the fraction of inci-
dent energy, TE, carried by transmitted modes. Techniques for doing
so have been fully described in Section 2.2 but we note that, given
the nature of the study models, measurements of the transmitted
field beyond the model heterogeneity are in the same medium as
that of the unperturbed incident field. Because the incidence-side
and transmission-side media are the same, ‘transmission coeffi-
cients’ for any given mode transmitting into itself cannot be greater
than unity (unlike Fig. A4 where transmission from one type of
medium into another is considered, allowing transmission coeffi-
cients greater than unity). With this caveat and using subscripts m,
i as general and incident mode indices respectively, Y and TE are
computed as follows:

Y i
m = am

ai

T i
E,m = Y i

m
2
(

Fm

Fi

)
. (8)

The wavefield fitting process is not exact—there is error in am,
leading to errors in Y and TE which are computed as:

�Y = �am

(
Y

am

)

�TE = ±2
TE

Y
(�Y ) + Fm

Fi
(�Y )2. (9)

This formulation for error propagation is founded on treating ai and
F as error-free constants, which they are in theory. In practice ai is
still error-free as it is measured in the laterally homogeneous back-
ground model, but the quantities F contain some errors due to nu-
merical integration of discretely sampled eigenfunctions. We min-
imize these errors by sampling the eigenfunctions densely enough
so that Fm is practically equal to energy density × group velocity,
for all modes considered (energy density computed using standard
energy integrals for Love/Rayleigh waves). However a correction
is made to account for the fact that modes other than the single
input mode are measured even in the absence of any model hetero-
geneity. These ‘spurious modes’ are artefacts of model discretiza-
tion (Appendix B) that contaminate measurements in the heteroge-
neous case, and so are factored in to the formulation represented by
eqs (8) and (9). The amplitude of spurious modes which are mea-
sured in the background model (during measurement of ai) is treated
as an error in the measurement process and added to the inherent
error in am. Quantitatively, this means that the �am in eq. (9) is

�am = �0am + am
i (10)

where �0am is the inherent error in the wavefield fitting technique
and am

i is the amplitude of mode m( �=i) obtained when a measure-
ment is made in the 1-D background model with mode i being the
only input.

Finally, because their amplitudes are small in the models consid-
ered, no modes beyond the 10th overtone are used in the fitting (at
any frequency, all the modes that exist up to the 10th overtone are
used). This exclusion of higher modes may lead to a less complete
picture of modal constitution, but it is not an incorrect one.

3.2 Results for individual models

We first present results for the canonical study model; results for all
other models are presented in a similar format. Love wave results
for the canonical study model (Fig. 3) show that the fundamen-
tal mode propagates largely unchanged, with little conversion to
other modes. However, higher modes show significant conversion
to other modes, including the fundamental, when they are incident.
The conversion is evident from wavefield decomposition as well
as dispersion measurement from waveforms, the latter providing
an indirect representation of the contribution of each mode to the
total field. Note that in each incident mode case, the total transmit-
ted energy in all the modes used for fitting adds up to roughly the
single-mode incident energy.

The canonical test model with its 10 per cent perturbation and
sharp lateral boundaries represents the most severe case of lateral
heterogeneity considered in this study and with a preview of its
results, we now move on to models with weaker heterogeneity as
shown in Fig. 4. Either the strength of the perturbation is reduced,
keeping the boundaries sharp, or the (maximum) strength is held
fixed at 10 per cent and the lateral boundaries are smoothed using
symmetrical linear tapers within which the perturbation changes
linearly between 0 and the maximum. Exactly the same kind of
models but with a negative perturbation instead of a positive one,
are also considered. A nomenclature is used to name the different
models (see Fig. 4), for convenient reference throughout the rest of
the paper, including reference to other similar models which are not
shown.

Figures for all the study models are provided in the Supporting
Information. They provide a lot of model-specific detail but some
of the key observations are: for positive perturbation models the
fundamental mode suffers negligible conversion as compared to
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Figure 3. Love wave results for the canonical study model. The 6 rows from top to bottom correspond to incidence of mode numbers 0 through 5 as indicated
on the left hand side. Left and right panels: transmission surface ratio and energy transmission respectively—the colour scheme showing different modes is
common to the two panels and is used throughout this section; the incident mode is distinguished by a line with circular markers as opposed to line only. In the
energy plots on the right, energies of individual modes (relative to incident energy) are added up to produce the total energy transmission coefficient, shown
by grey diamonds. The conspicuous suppression of the fundamental mode in these plots shows that although the fundamental mode has appreciable surface
amplitude in the transmitted field, it accounts for very little of the incident energy. Middle panel: phase velocity dispersion measured by the simple slant-stack
method (e.g. Park et al. 1998; Van der Kruk et al. 2007; Douma & Haney 2013) using waveforms at ‘stations’ (placed every 60 km) on the transmission side.
Here the colour scheme for individual modes is the same as in the two side panels, but the incident mode is distinguished by a solid line whilst other modes
are shown by dashed lines. There is good correspondence between the measured dispersion and the transmission surface ratio.
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Figure 4. Study models used in this study. Varying degrees of lateral heterogeneity are achieved by varying either the perturbation strength (with sharp
boundaries, top row) or the smoothness of the lateral boundaries (with 10 per cent strength, bottom row). Note that in the bottom row the total width of the
heterogeneity is increased to allow for smoother lateral boundaries. The generic format of model names is <X><S>_T<L1>_W<L2>. Here <X> is either
‘P’ or ‘N’, indicating a positive or negative perturbation respectively; <S> is an integer denoting the percentage strength of the perturbation and <L1> is the
length in km of the lateral taper on either side, and <L2> is the total width of the perturbation. In this study we are interested in the strength of heterogeneity
<S> and the length-scale <L1>; the length-scale <L2> is of secondary importance and is only varied to allow the desired range on <L1>.

the overtones; conversion of/to the fundamental mode is generally
greater for Love waves than for Rayleigh waves; conversion of/to
the fundamental mode is significantly greater for negative pertur-
bation models (up to 95 per cent of incident energy converted in
case of Love waves) than for positive perturbation models (at most
15 per cent of incident energy converted).

The single-incident-mode approach taken in this paper reveals
rather complex mode conversion behaviour, with a single mode
giving rise to multiple other modes with varying strengths as a
function of frequency. However in order to study what happens in
the real Earth, one may wish to take a comprehensive view—what
is the net effect of a mixture of modes interacting with a hetero-
geneity? We have seen that a single incident mode loses energy to
other modes by conversion but that same mode is also likely gen-
erated by conversion from a different incident mode. Hence the net
effect of a heterogeneity on the modal constitution of an incident
wavefield containing a mixture of modes (as in the real Earth), re-
mains obscured in the mode-wise picture. But we can combine the
mode-wise results into a comprehensive result for each model—this
is most easily done in terms of energy because energies in different
modes can simply be added. Thinking of the incident field as a mix-
ture of modes, we compute the total transmitted energy in mode m,
Em(ω), by adding up its energy in the transmitted field from each
single-mode-incidence case

Em(ω) =
5∑

i=0

T i
E,m(ω)Ei (ω) (11)

with Ei being obtained from ai as a2
i Fi . We do this for m ∈ [0, 5]

only, that is, the comprehensive picture of the transmitted field is

limited to those modes which were incident. Error propagation in
the above equation is straightforward:

�Em(ω) =
5∑

i=0

Ei (ω)�T i
E,m(ω). (12)

Results are presented in such a way that energies are normalized
at each frequency, that is, at each frequency we look at the per-
centage of the total energy carried by each mode. Doing this for
the incident and transmitted fields shows how the energy partition-
ing (among modes) of a surface wavefield, is altered by propagation
through a heterogeneity. A Love wave example (Fig. 5) shows a clear
correlation of the extent of energy redistribution, with strength of
model heterogeneity. Note that the grey stars in this figure, which
show the sum of modal energies, start out near the 100 per cent
mark at the low frequencies but drop well below this level at higher
frequencies—this is a reflection of the fact that at low frequencies
the total incident energy is contained in the same modes that were
incident, but at higher frequencies, a significant proportion of it is
lost to higher modes not included in the comprehensive result. Fig-
ures of this kind can be made for all study cases, but they have the
limitation that they contain an imprint of the source excitation—the
energy distribution of the incident wavefield is tied to the particular
earthquake source used in this study—so they are not used beyond
the simple qualitative summary provided, for example, by Fig. 5.

3.3 Overview and comparison with noise

In order to quantify the significance of mode conversion as a func-
tion of medium heterogeneity, we go back to the mode-wise picture
and compare converted mode amplitudes with typical noise lev-
els in seismology. Absolute values of these amplitudes of course
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Figure 5. Love wave comprehensive result for models (a) P8_T0 (b) P6_T0 (c) P4_T0 (d) P2_T0. In each plot the solid lines show the incident field energy
distribution; dashed-starred lines show energies in the transmitted field, using the same colour scheme. The grey stars at the top denote the sum of the energies
of the 6 modes considered, in the transmitted field. The details of this figure, i.e., the shapes of the solid lines, are tied to the excitation characteristics of the
particular source used and are unimportant; its main purpose is to illustrate the deviation (or lack thereof) of the dashed-starred lines from the solid lines.

depend on the amplitude of the ‘incident’ wavefield, which de-
pends on extraneous factors (unrelated to medium heterogeneity)—
predominantly source strength and distance from source. The
greater the earthquake magnitude and smaller the epicentral dis-
tance, the stronger (in absolute terms) will be the effects of mode
conversion. Here we use a single scenario as an example, with the
knowledge that the results will simply scale with the two aforemen-
tioned factors.

So far this paper has been concerned only with relative quantities:
surface amplitude or energy transmission coefficients. To convert
these to absolute values, one only need invoke the amplitude of the
incident field. Thus far absolute amplitudes have been unrealistic
because all computations have been performed without attenuation
and geometrical spreading; now for this summary section we recom-
pute the background wavefield using a simple attenuation model
(QP = QS = 590 at all depths), allowing for geometrical spreading
and placing the earthquake source at a distance of 3000 km outside
the FD model. We refer to the recomputed background field taken at
the start of the FD model as the incident field in the remainder of this
section. Note that this approach for computing absolute amplitudes
beyond the model heterogeneity is approximate because it does not
account for the amplitude reduction (due to spreading and attenu-

ation) as the heterogeneity is traversed. Finally, the specific choice
of source distance and Q-value used in this section is somewhat
arbitrary, but it is consistent with the next section where synthetic
waveforms subject to inversion are generated with exactly the same
set up.

In this way we have a means of obtaining absolute amplitudes of
mode conversions, for one particular scenario which is a realistic
example in global surface wave tomography. In order to compare
these to known noise levels in seismic records, we use the USGS
New Low Noise and New High Noise Models (NLNM and NHNM
respectively) constructed by Peterson (1993). These models may be
seen as lower and upper bounds on Earth noise manifested in seismic
records. They are popularly used in the form of power spectra for
ground acceleration; here we use them as amplitude spectra for
ground displacement (for easy comparison with surface amplitudes
of modes), with the amplitude spectrum being simply approximated
by taking the square root. Once converted to absolute amplitude,
we find that for the particular source and distance used, the incident
field itself is of lower amplitude than the (high) noise model at some
frequencies, especially for the higher modes.

With this background we consider the summary figures of
this section. So far in this paper, figures have corresponded to a
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single model studied over a range of frequencies; now figures are
made using a range of models at a single frequency. The aim is
to visualize the effects of different heterogeneity parameters and
generalize the results beyond the specific study models used, so
for each incident mode and any given frequency, the transmission
surface ratio is plotted against some non-dimensional parameter
representing the medium heterogeneity—this may be the perturba-
tion strength (per cent perturbation with respect to background) or
the smoothness length scale (D) relative to the seismic wavelength
λ. Ultimately the results are still presented in relative form but
the comparison with noise is achieved by scaling the noise models
relative to the incident field amplitude.

The results for both Love and Rayleigh waves in negative pertur-
bation models (Figs 6 and 7; a comparison between these validates
the earlier claim of greater fundamental mode conversion in the
Love wave case) show gross signs of mode conversion decreas-
ing with model smoothness, though these are not directly obvious.
Only some of the plots (e.g. mode 2 incidence in the Love case
or mode 1 incidence in the Rayleigh case, at 33 s period) show
the incident mode regaining its original amplitude, whilst converted
modes decline in amplitude, with increasing smoothness. However
with these plots there is a danger in looking at each frequency in
isolation. For example in the Love wave case (Fig. 6) at 20 s period,
conversion from the fundamental mode to the first overtone or vice
versa, appears to amplify with increasing smoothness in the first
four models. This does not mean that mode conversion at the short
periods gets stronger with increasing model smoothness. To under-
stand this it is necessary to look at the complete result (Supporting
Information)—in the sharpest model, conversion from mode 0 to
mode 1 has a peak at ∼0.065 Hz; as the model gets smoother this
peak moves towards the lower frequencies (and eventually dimin-
ishes in amplitude), thereby causing increased converted amplitude
at 0.05 Hz or 20 s period. The move towards lower frequencies
reflects the fact that a given model smoothness may be ‘smooth
enough’ for the high frequencies (shorter wavelengths) but not so
for lower ones. Nonetheless it may be argued that at 20 s period for
example, D ≈ 15λ is still sharp enough to produce significant mode
conversion (given a maximum model perturbation of 10 per cent).
Fortunately the critical value of D/λ reduces with frequency (in-
creasing λ): at 33 s, D ≈ 12λ and at 100 s, D ≈ 3λ may be deduced
as being smooth enough for negligible mode conversion.

Results from variations in heterogeneity strength rather than
smoothness (Supporting Information) exhibit a clearer trend of con-
verted mode amplitudes increasing with heterogeneity strength at
all periods. At 100 s period, conversions from all modes are below
the high noise level (considering cases where the incident mode
amplitude is above the noise level), with the incident mode showing
negligible departure from its original amplitude. At shorter periods
where conversions are stronger it can be argued that a heterogene-
ity of 2 per cent strength is too weak to produce conversions above
noise levels, but 4 per cent heterogeneity is strong enough for the
same—at 4 per cent one can just see the incident mode falling below
its incident amplitude. At 6–8 per cent and above, conversions are
strong enough to rise above the incident amplitude.

Irrespective of heterogeneity strength and smoothness, a key ob-
servation in this study is that conversion of the fundamental mode
is insignificant—well below noise levels—at all periods, at least
for Rayleigh waves (the Love wave fundamental shows significant
conversion in negative perturbation models). This bodes well for
surface wave studies based on fundamental mode phase or group
velocity dispersion (e.g. Trampert & Woodhouse 1995; Ekström
et al. 1997; Nettles & Dziewoński 2008). However, higher-mode

analysis provides added resolution of the shallow structure and is
required to resolve deeper upper mantle structure.

4 WAV E F O R M I N V E R S I O N

The analysis in the previous section shows that there can be signifi-
cant energy in converted modes, to the point that they may be iden-
tified in actual seismograms and exploited in imaging algorithms.
A related question is the extent to which ignoring the existence of
mode conversions biases the wave-speed models generated by in-
version algorithms that make use of higher mode observations. In
other words, to what extent can one afford not to explicitly model
mode conversions when constructing models of the subsurface? The
effects of such ‘model induced error’ on an inverse algorithm are
not easy to quantify in a general way, since the extent to which an
algorithm is robust to them can depend on factors such as details
of the recording geometry or choices of how a system of equa-
tions is conditioned. Nevertheless, we can obtain some insight into
the effects of ignoring mode conversions by considering how they
influence the observations that are used in the inverse problem.

We take as an appropriate and illustrative example the multimode
inversion algorithm of CL1987 as implemented by Debayle & Ri-
card (2012), in part because it has been used in several regional
(e.g. Debayle & Kennett 2000; Priestley & Debayle 2003; Heintz
et al. 2005; Maggi et al. 2006; Priestley et al. 2006, 2008) and global
(e.g. Debayle et al. 2005; Priestley & McKenzie 2006, 2013) upper-
mantle studies. However, we emphasize that the mode coupling we
focus on in this paper is not tied to the CL1987 inversion method
but affects in a similar way any surface waveform inversion method
using a modal summation in the forward calculation. The ultimate
objective of the CL1987 algorithm is to determine a best-fitting,
1-D, ‘true path-average’ model of Vs between a given source and
receiver. Critical to the application of this algorithm is the accurate
identification of multiple modes in an observed seismogram. De-
tails are available in Debayle & Ricard (2012, hereafter DR2012),
but basically, modes are identified by cross-correlating the observed
seismogram with synthetics generated by single modes in a refer-
ence 1-D model. The lag time (phase), amplitude, and width of the
lobes that result from (taking the envelopes of) this cross correlation
serve as ‘secondary observables’ that the algorithm then inverts to
recover a true path-average model. Our primary objective in this
section is to investigate the extent to which the presence of un-
modelled mode conversions alters the estimates of these secondary
observations.

We invert only the vertical component (Rayleigh) waveforms
computed for the 2-D study models of the previous section, but
with geometrical spreading and attenuation now included and with
each waveform built from the combined solutions of all input modes
(rather than considering each mode separately). Inversion is done
with the DR2012 code appropriately adapted for use with the syn-
thetic data of this study1 and with the background model of the

1
The a priori information imposed on the solution, namely the source region
model and the crustal part of the solution, are taken to be equal to what was
used in the generation of the synthetic data rather than being taken from
third party models; attenuation (log Q) is eliminated as a model parameter
to be inverted for; the 1-D forward solver that is tied to the original DR2012
package (based on the method of Takeuchi & Saito (1972) and Cara (1978))
is replaced by the method used to compute the background wavefield in
this study (Section 2.1).
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Figure 6. Love wave mode conversion as a function of model smoothness, shown for three different periods and each incident mode as indicated on
the right-hand side. Note that the case of mode 5 incident is left out due to constraints of space. Models included: N10_T0_W3200, N10_T400_W3200,
N10_T800_W3200, N10_T1200_W3200 and N10_T1600_W3200. Description of individual plots—for any chosen period, the log of the transmission surface
ratio is plotted against a non-dimensional parameter, D/λ, representing the model heterogeneity. Here D is the length of the heterogeneity lateral taper and the
wavelength λ, is that of the incident mode (denoted by stars) in the background model. Other (converted) modes are shown by circles though the colour scheme
is consistent throughout. The two noise models HNM and LNM are marked by dashed lines as shown. A grey line marks the value 0 on the y-axis, representing
the incident mode amplitude. Finally, the figure is grey-shaded below the y-value of −1.3, which corresponds to transmitted amplitude ≈1/20th of incident
amplitude. This partly arbitrary choice is based on the premise that a transmission surface ratio of 0.05 or less is hard to distinguish from the ‘noise’ associated
with the FD modelling—see discussion on spurious modes in Appendix B. Although most plots extend well below the y-value of −1.3 to accommodate the
LNM, shading is provided to draw the eye to what lies above it.
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Figure 7. Same as Fig. 6 but for Rayleigh waves.

FD calculations used as the starting and reference model for inver-
sion. To study the effects of mode conversion, we conduct a series
of tests as follows: given the locations of a source and receiver in
a 2-D study model, we calculate the 1-D, true path-average (TPA)
model for that receiver and analytically compute ‘path-average’ (PA)

seismograms in this TPA model (Fig. 8). The TPA model for any
receiver depends on the nature of the 2-D model heterogeneity and
the fraction of the total path length between the source and receiver
that passes through the heterogeneity. Both the PA seismograms
and those computed by FD analysis in the 2-D model are subjected
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Figure 8. Schematic to explain the procedure for DPA analysis on vertical component synthetic waveforms. (a) Starting with a 2-D model as shown on the
left, the true path-average Vs structure for any station (black inverted triangle) is computed (right). Averaging is done from source to station so it includes the
distance of the source outside the 2-D model, which is not shown. Note that the resulting path-average structure differs from the background structure only
in the depth range corresponding to the heterogeneity in the 2-D model. (b) A waveform is computed analytically in the path-average model for the same
epicentral distance as in the 2-D model. (c) The two sets of waveforms are subjected to waveform inversion in exactly the same manner, and the secondary data
extracted from them are compared. (d) Example of DPA analysis, using an example station lying beyond the heterogeneity in model P2_T0_W2400, which
serves as a benchmark for the DPA analysis. This figure shows the envelopes of modal cross-correlograms for the 2-D data (blue curves) as well as path-average
data (green curves) for the station in question. Each subplot shows the envelope(s) plotted as a function of cross-correlation time shift τ , along with the picked
secondary observables (data) shown by the coloured markers—three samples for each lobe picked, one at the centre (location of maxima) and two on either
side. Mode-period combinations where there are no markers have not been used in the inversion. In terms of DPA analysis, the blue and green curves showing
the two sets of modal envelopes are very similar.
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Figure 9. DPA for a ‘far’ station (station 46, at 3180 km in model) in model P10_T0_W2400. We use this model as a case study in this section because it
permits the conduct of DPA analysis as a function of heterogeneity strength as well as smoothness. The same plotting conventions are used as in Fig. 8, but
here the DPA is much higher, with significant amplitude and shape differences between the two sets of modal envelopes.

to the same mode-identification by cross-correlation technique of
CL1987. We define a Departure from the Path-Average Approxima-
tion (DPA) as the extent to which the modal correlograms for any
particular mode differ between these two. As all other things are
equal, any such difference should be due to the presence of wave
propagation features in the FD seismograms that are not accounted
for in the PA seismograms. Hence, the DPA quantifies the extent to
which the occurrence of mode conversion violates the path average
approximation and alters the fundamental observable in the inverse
problem.

A few examples of these tests are illustrative. First, as may be
expected, in the case of weak (2 per cent) heterogeneity (Fig. 8),
the modal correlograms for the PA and FD seismograms are vir-
tually identical and the DPA is small. If we increase the level of
heterogeneity to 10 per cent (Fig. 9), the DPA increases substan-
tially, both in amplitude and phase, particularly at shorter periods
(<50 s) and at higher modes. If we maintain that level of hetero-
geneity but reduce the sharpness of the transition (Fig. 10), the DPA
decreases—particularly for phase (lag time)—in accordance with
Woodhouse (1974). To summarize the results of a large number of
similar test cases, we find that in general:

(i) DPA is small when heterogeneity is less than about 6 per cent
but then increases with increasing percentage strength.

(ii) DPA decreases with increasing smoothness of heterogeneity.
For example, DPA is not significant when the smoothness length
scale, D/λ ≈ 8 or larger at about 30 s period.

(iii) DPA is less for nearer stations (stations lying within the
heterogeneity), than for those at larger distances (beyond the het-
erogeneity).

(iv) DPA decreases with increasing period, with lower DPA at
periods of 50–250 s, and higher DPA for periods of 22–50 s.

(v) DPA is greater for higher modes than for the fundamental
mode and lower order overtones.

Given what we have seen about the factors governing mode con-
versions, these trends support our contention that DPA is controlled

primarily by the strength of these conversions. Our deconstruction
analysis, where we deconstruct the modal envelopes to assess the
contribution of different modes, has shown that the DPA is the re-
sult of the complicated interaction of modes emanating from the
seismic source and modes ‘generated’ by scattering at the bound-
aries of the lateral heterogeneity. This modal interaction distorts the
propagation of the mode emanating from the source and can cause
artefacts in the seismic structure derived from the typical surface
wave analysis employed in multi-mode surface wave tomography.
Because of this complex interaction, it is not possible to formulate
simple rules for highest frequency and mode number that may be
used for multi-mode surface wave analysis under the path average
framework. Nonetheless Fig. 11 provides a graphical summary of
the variation of DPA in this study, with frequency and mode number.
What we can say with confidence is that in the presence of a laterally
varying structure, the fundamental mode follows the path average
approximation well but the overtones follow it less well. Extending
the surface wave analysis to too high a frequency and too high a
mode number can lead to a biased result which may not only affect
the deep structure but may potentially corrupt the shallow structure.

4.1 Implication for inversion results

As mentioned above, the effects of these DPA errors on the outcome
of an inversion (ideally the TPA model) can depend on a variety of
choices in how the inversion is performed. Nevertheless, we can
make some useful inferences. A simple observation is that a lag
mismatch in the correlograms will translate into an error in the
inferred group velocity. For example, the 33-s modal envelopes for
the fourth higher mode shown in Fig. 9 have a clear mismatch of
about 100 s for the left-most lobe. Given the epicentral distance of
this station (6200 km), this difference in lag time corresponds to a
group velocity discrepancy of ∼7 per cent. Note that the model in
this example has a high percentage heterogeneity (10 per cent) and
a sharp lateral boundary; hence this discrepancy will be at the high
end of those that we observe in our tests.
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Figure 10. Mode 4 cross-correlogram at 33 s (an example correlogram chosen for illustration following Fig. 9) as a function of heterogeneity smoothness,
shown for four different models: (a) P10_T0 (b) P10_T400 (c) P10_T800 (d) P10_T1200. The large phase discrepancy in the left-most lobes seen in (a)
gradually disappears with increasing model smoothness. Note that for brevity in this section, the last part of the models names is dropped as all models have
the same total width of heterogeneity, 2400 km.

A more general observation is related to the manner in which
CL1987 processes multiple modes. For any given period, the al-
gorithm tries to fit the fundamental mode as well as higher modes
(those that are energetic enough at that period). Because the fun-
damental mode usually obeys the path average approximation rea-
sonably well, it will correspond to a lobe commensurate with the
true path-average model. However, the higher mode peaks (such as
mode 4 in the example from Fig. 9) will deviate from the predictions
of the TPA model, thereby pushing the inversion away from the true
structure.

We note that this argument is similar to that of Marquering et al.
(1996). They had a bit more clarity because they fit the fundamental
mode Rayleigh wave plus the S-wave arrival (modelled by surface
wave mode summation), and considered cases where the lateral
heterogeneity is not sampled by the S-wave at all (it is shallow
and mid path). Finally, we note that we have only attempted to
understand the effect of phase (lag time) DPA. The amplitude DPA
seen in this section is harder to interpret and for actual seismograms
will be sensitive to attenuation (which is ignored in this study) as
well as velocity structure.

5 C O N C LU S I O N S A N D D I S C U S S I O N

Mode conversion effects in surface wave propagation through lat-
erally heterogeneous media have been quantified empirically. Us-

ing 2-D numerical modelling, surface wave propagation has been
simulated in a variety of laterally heterogeneous models and the
simulation results analysed to quantitatively illuminate the nature
and extent of mode conversion induced. This has been done with a
bottom-up approach by studying the impact of heterogeneity on a
single surface wave mode at a time. The path average approxima-
tion in ray theory-based surface wave tomography has been criti-
cally evaluated at the microscopic level, by considering individual
waveform inversions.

Under the simplifying assumptions of 2-D media and normal
incidence at heterogeneities (precluding off-path propagation and
Love–Rayleigh coupling respectively), forward modelling in this
study corroborates the theoretically expected correlation between
mode conversion and heterogeneity strength and sharpness, but im-
portantly also shows that conversion is much more significant for
surface wave overtones, than for the fundamental mode. Viewed in
the larger context of the twin challenges of along-path scattering
(mode conversion) and off-path scattering (deviation from the GCP)
in surface wave tomography, this suggests that the two said chal-
lenges are complementary; the former primarily affecting higher
mode surface waves and the latter, primarily the fundamental (e.g.
Ritsema et al. 2004).

Further, the impact of mode conversion on the CL1987 inver-
sion technique has been demonstrated. In doing so we have looked
not at the result of an inversion but at the data that actually goes
into it, identifying signatures of mode coupling. No such signatures
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Figure 11. Quantitative measures of DPA as a function of period and mode number, shown for strong and weak heterogeneity. (a) Strong heterogeneity
case: for each mode-period combination in Fig. 9, DPA is quantified as the difference between the secondary observables (specifically, the central pick of the
highest-ranked2 lobe) extracted from the 2-D data and path average data.3 We characterize this difference by changes in amplitude (left panel) and occurrence
time (right panel) of the maxima. Amplitude DPA is computed as (δA/APAVG) where δA = (A2D − APAVG). Time or phase DPA is the difference in correlation
lag time, =(t2D − tPAVG), δt. Note that both measures of DPA are relatively small for the fundamental mode at all periods but large for higher modes at periods
less than about 50 s. At shorter periods, the effects on higher modes can be highly irregular, as evidenced by the large excursion in δt for mode 4 at 33 s. (b)
Same as (a) but derived from Fig. 8(d), representing the case of weak heterogeneity with lower DPA overall.

have been found at periods of 50 s or longer, but it is clear that
path-average surface wave tomography by the CL1987 method (or
similar) cannot be simply extended to shorter periods (∼30 s and
shorter) without revising the forward modelling on which the inver-
sion is based. The signatures that have been found at short periods
are distinct from the effects of noise in real data—noise cannot
produce the kind of systematic phase perturbations seen here as a
function of heterogeneity strength and sharpness. Moreover in real
data inversions, noisy data are often rejected at the pre-processing
stage so there is arguably a genuine cause for concern.

Although this study has focused on the effects of mode coupling
on a specific inversion technique, any approach that uses a path

2In case of multiple lobes on the modal envelopes, the DR2012 algorithm
ranks the selected lobes according to a criterion that trades off maxima
amplitude against distance from reference time, as described in Debayle &
Ricard (2012).

average approximation like that in CL1987 will be similarly sensi-
tive to the complications of mode conversions described here. The
relationship between the adequacy of the path average approxima-
tion as implemented in the CL1987 approach, and the degree of
lateral heterogeneity in the medium being imaged, is substantiated
by forward modelling results, which are general. Within the realm
of global upper mantle tomography, presuming a short period limit
of 20–30 s, we infer that the effects caused by heterogeneities with
strength >6 per cent and smoothness length scales <10–15λ (with
a trade-off between strength and smoothness limits), will likely lie
outside the realm of validity of the path average approximation.
While fundamental modes may be relatively robust to these effects,

3For modes and periods that were not actually picked in the inversion,
primarily higher modes at longer periods, candidate lobes were manually
identified (where reasonable) in order to obtain sufficient data points for
this figure.
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they become increasingly significant in the modelling of higher
modes.
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Sieminski, A., Lévêque, J. & Debayle, E., 2004. Can finite-frequency effects
be accounted for in ray theory surface wave tomography?, Geophy. Res.
Lett., 31, L24614, doi:10.1029/2004GL021402.
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A P P E N D I X A : F I N I T E D I F F E R E N C E
T E S T I N G

On using the FD solver to model surface wave propagation to large
distances (tens of wavelengths), it was found that the results were
sensitive to the level of discretization, that is, grid density, used
in the modelling. This suggests that the code suffers from numeri-
cal dispersion effects—a common problem with FD methods used
to solve wave equations. At short distances the effects are neg-
ligible but since the purpose of this study is to compute synthetic
seismograms at distances typical in global/regional surface wave to-
mography, extensive code testing was carried out to ensure reliable
results.

Tests were performed with the model of Fig. A1, chosen for its
simplicity as it is derived from the simplest type of model that
can allow dispersive surface waves—a layer over a half-space. This
model is also well suited to testing different grid densities because
everything about its geometry ensures equivalent discretization by
an 8, 6, 4 or 3 km grid—the regular and perturbed layer thicknesses
are 48 and 24 km respectively, the perturbation in layer thickness
starts at 120 km and is 192 km wide. Setting a high frequency limit
of 0.08 Hz (12.5 s period) for the modelling, velocities in the model
were chosen such that the shortest Rayleigh wavelength is 48 km.
The values 8, 6, 4 and 3 km for the grid spacing correspond to 6, 8, 12
and 16 grid points per shortest wavelength (GPPSW), respectively.
Testing was done with an earthquake source 1000 km outside the
model (on the left side) and at a depth of 72 km depth, which
ensured good Rayleigh wave fundamental mode excitation up to
0.08 Hz.

Fig. A2 compares the results of the test obtained with different
grid sizes. It is clear that the short wavelengths (late arrivals) are
more strongly affected by the grid spacing than the long wave-
lengths, and that the problem worsens with distance. At large dis-
tances (∼100 times the shortest wavelength) a grid spacing of 12
GPPSW is required for robust computations.

A1 Testing

We test the FD output against known theoretical results for sim-
ple models of lateral heterogeneity which consist of a single, plane
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Figure A1. Grid-test model used for the tests shown in Fig. A2. It is derived by perturbing (with a local change in layer thickness) a 1-D layer over half-space
model.

Figure A2. Vertical component synthetic seismograms at three different distances for Rayleigh wave propagation in the grid-test model, shown as a pairwise
comparison of the result with 6 (magenta), 8 (black), 12 (red) and 16 (blue) GPPSW as indicated on the left-hand side. Note that distances indicated are in the
model, not epicentral distances, as the source is outside the model.
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vertical contact between two laterally homogeneous regions. Mod-
els of this type have been extensively studied in the seismological
literature, using a variety of semi-analytical techniques that express
the wavefield in terms of incident, reflected and transmitted waves,
thereby reducing the problem to the evaluation of reflection and
transmission coefficients.

All test models are derivatives of the layer-over-half-space type
and we use four different models as shown in Fig. A3—(a) a single
layer, single step model with no change in elastic parameters; (b)
a similar model with change in parameters; (c) a multilayer single
step model with change; (d) a double step model with no change in
parameters. For each of these models, the Love and Rayleigh funda-
mental mode reflection/transmission problem is (separately) solved
in this study—using the same analytical method as the original pub-
lication from which the model is taken in case of Love waves, and
using the Green’s function method of Its & Yanovskaya (1985) for
Rayleigh waves, regardless of model. The observable/quantity used
for benchmarking is the ratio of surface displacement in the trans-
mitted field to that in the incident field, hereafter called the transmis-
sion surface ratio. In case of FD modelling results, this quantity is
measured by dividing the MPFs of the transmitted field by those of

the incident field, which in all cases consists of just the fundamental
mode. Having confirmed that the analytical results obtained in this
study match those in the published literature, we compare the FD
modelling result for each model with the corresponding analytical
result, in Fig. A4. Implementation of the analytical techniques in this
study, rather than simply comparing with published results, allows
deviations (such as may be required by the FD grid) from or exten-
sions to the exact model type, frequencies and mode numbers for
which published results are available. For example, the Love wave
result in Fig. A4(c) shows conversion to multiple higher modes—the
ability to make such a measurement is critical to this paper but higher
mode results for this model are not available in the published litera-
ture even though this model has been independently used in multiple
studies.

Based entirely on visual inspection, agreement with theory is
deemed to be acceptable in all cases. Following Section 2.2.2 we
also compute energy transmission coefficients and find that FD
modelling results differ from the analytical ones by up to 20 per cent.
However it must be borne in mind that the analytical results are not
exact—the techniques are approximate in principle and subject to
numerical integration errors in practice.

Figure A3. Schematic representation of models used for testing of FD calculations against analytical results: (a) M-discontinuity model of Alsop (1966),
shown with the Vp values (unspecified in original model) used in this study. (b,c) Models F and L respectively, from Gregersen & Alsop (1974); modified
slightly from original in that the crustal thickness on the RHS is taken as 5 km rather than 7 km, to facilitate use of a 2.5 km FD grid. (d) Double-step model
from Its & Yanovskaya (1985). In all cases layer thicknesses are shown in km and units for velocity and density are km s−1 and gm cc−1, respectively.
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Figure A4. Test results for the same models (a)–(d) as Fig. A3. The left column shows the Vs structure for these models as implemented on the FD grid, middle
and right columns show the results for Love and Rayleigh wave tests respectively. In each case a fundamental mode wave propagates from left to right in the
model and results are visualized in terms of the transmission surface ratio plotted as a function of frequency. Solid lines show the analytic results obtained in
this study and the dots with error bars show the results from FD modelling. The incident fundamental mode is shown in black and, where applicable, higher
modes are shown with the colours indicated on individual plot legends. Note that conversion to higher modes is not considered in the Rayleigh wave tests.
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A P P E N D I X B : WAV E F I E L D F I T T I N G
E R RO R S

The mode-wise amplitude spectrum (surface displacement ampli-
tude) of the earthquake source used in this study is shown in Fig. B1.

The corresponding spurious mode measurements (modes other than
input mode measured by the wavefield fitting method when the
model is 1-D and the input is a single mode) in the background
model used in this study are shown in Figs B2 and B3 for Love and
Rayleigh modes, respectively.

Figure B1. Mode amplitudes in the transverse (left) and vertical (right) component of displacement due to the chosen source, in the chosen background model,
reflecting the source excitation of Love and Rayleigh wave modes respectively. In the Rayleigh wave case the fundamental mode dominates at low frequencies
but there is still good excitation of the overtones.

Figure B2. Measurement of individual Love wave modes (ai values) which are separately input to the 1 −D background model (mode number indicated above
each plot), showing the amplitude of spurious modes measured. Note the correspondence of the genuine mode measurement with Fig. B1, left panel. In case
of the overtones, the spurious modes are dominated by the fundamental mode, as is most clearly visible for the third overtone.
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Figure B3. Same as Fig. B2 but for Rayleigh modes. Genuine mode measurements correspond to the right panel of Fig. B1.

S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

A P P E N D I X C

Figure C1. Love (top) and Rayleigh (bottom) wave mode-wise
results for model P10 T0 W1200 (the canonical study model).
Figure C2. Love (top) and Rayleigh (bottom) wave mode-wise
results for model P8 T0 W1200.
Figure C3. Love (top) and Rayleigh (bottom) wave mode-wise
results for model P6 T0 W1200.
Figure C4. Love (top) and Rayleigh (bottom) wave mode-wise
results for model P4 T0 W1200.
Figure C5. Love (top) and Rayleigh (bottom) wave mode-wise
results for model P2 T0 W1200.
Figure C6. Love (top) and Rayleigh (bottom) wave mode-wise
results for model P10 T0 W2400.
Figure C7. Love (top) and Rayleigh (bottom) wave mode-wise
results for model P10 T400 W2400.
Figure C8. Love (top) and Rayleigh (bottom) wave mode-wise
results for model P10 T800 W2400.
Figure C9. Love (top) and Rayleigh (bottom) wave mode-wise
results for model P10 T1200 W2400.
Figure C10. Love (top) and Rayleigh (bottom) wave mode-wise
results for model N10 T0 W3200. Reciprocity between modes 0–1

is clearly visible in the Love wave case. Note that these are energy
plots and the fundamental mode having nearly the same energy as
the incident first overtone (at ∼0.065 Hz) implies it has an amplitude
significantly larger (4–5 times) than that of the incident mode.
Figure C11. Love (top) and Rayleigh (bottom) wave mode-wise
results for model N10 T400 W3200.
Figure C12. Love (top) and Rayleigh (bottom) wave mode-wise
results for model N10 T800 W3200.
Figure C13. Love (top) and Rayleigh (bottom) wave mode-wise
results for model N10 T1200 W3200.
Figure C14. Love (top) and Rayleigh (bottom) wave mode-wise
results for model N10 T1600 W3200.
Figure C15. Love wave mode conversion as a function of strength
of heterogeneity. Models included: P2 T0, P4 T0, P6 T0, P8 T0
and P10 T0. Format is same as that of Fig. 6 in main text.
Figure C16. Love wave mode conversion as a function of strength
of heterogeneity. Models included: P2 T0, P4 T0, P6 T0, P8 T0
and P10 T0. Format is same as that of Fig. 6 in main text.
Figure C17. Mode 4 cross-correlogram at 33 s as a function of
heterogeneity strength, shown for four different models: (a) P8 T0
(b) P6 T0 (c) P4 T0 (d) P2 T0. Similar to Fig. 10 of main text, with
the P10 T0 case shown therein.
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