116 research outputs found

    The effect of cigarette smoke exposure on the development of inflammation in lungs, gut and joints of TNFΔARE mice

    Get PDF
    The inflammatory cytokine TNF-alpha is a central mediator in many immune-mediated diseases, such as Crohn's disease (CD), spondyloarthritis (SpA) and chronic obstructive pulmonary disease (COPD). Epidemiologic studies have shown that cigarette smoking (CS) is a prominent common risk factor in these TNF-dependent diseases. We exposed TNF Delta ARE mice; in which a systemic TNF-alpha overexpression leads to the development of inflammation; to 2 or 4 weeks of air or CS. We investigated the effect of deregulated TNF expression on CS-induced pulmonary inflammation and the effect of CS exposure on the initiation and progression of gut and joint inflammation. Upon 2 weeks of CS exposure, inflammation in lungs of TNF Delta ARE mice was significantly aggravated. However, upon 4 weeks of CS-exposure, this aggravation was no longer observed. TNF Delta ARE mice have no increases in CD4+ and CD8+ T cells and a diminished neutrophil response in the lungs after 4 weeks of CS exposure. In the gut and joints of TNF Delta ARE mice, 2 or 4 weeks of CS exposure did not modulate the development of inflammation. In conclusion, CS exposure does not modulate gut and joint inflammation in TNF Delta ARE mice. The lung responses towards CS in TNF Delta ARE mice however depend on the duration of CS exposure

    Family history of cancer and risk for esophageal and gastric cancer in Shanxi, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Family history (FH) by different relative types and risk of upper gastrointestinal (UGI) cancers has been only rarely reported; the data on UGI cancer survival are sparse.</p> <p>Methods</p> <p>600 esophageal squamous cell carcinoma (ESCC) cases, 598 gastric cardia adenocarcinoma cases, and 316 gastric non-cardia adenocarcinoma cases, and 1514 age-, gender-, and neighborhood-matched controls were asked for FH in first degree relatives and non-blood relatives. Odds ratios (ORs) and 95% confidence intervals (CIs) from logistic regressions, and hazard ratios (HRs) from Cox proportional hazard regressions were estimated.</p> <p>Results</p> <p>Increased ESCC risk was associated with FH of any cancer (OR = 1.72, 95% CI = 1.39–2.12), FH of any UGI cancer (OR = 2.28, 95%CI = 1.77–2.95) and FH of esophageal cancer (OR = 2.84, 95%CI = 2.09–3.86), but not FH of non-UGI cancer. Individuals with two or more affected first-degree relatives had 10-fold increased ESCC risk. FH of gastric cardia cancer was associated with an increased risk of all three cancers. Cancer in non-blood relatives was not associated with risk of any UGI cancer. FH of UGI cancer was associated with a poorer survival rate among younger ESCC cases (HR = 1.82, 95%CI = 1.01–3.29).</p> <p>Conclusion</p> <p>These data provide strong evidence that shared susceptibility is involved in esophageal carcinogenesis and also suggest a role in prognosis.</p

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Exact distribution of a pattern in a set of random sequences generated by a Markov source: applications to biological data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In bioinformatics it is common to search for a pattern of interest in a potentially large set of rather short sequences (upstream gene regions, proteins, exons, etc.). Although many methodological approaches allow practitioners to compute the distribution of a pattern count in a random sequence generated by a Markov source, no specific developments have taken into account the counting of occurrences in a set of independent sequences. We aim to address this problem by deriving efficient approaches and algorithms to perform these computations both for low and high complexity patterns in the framework of homogeneous or heterogeneous Markov models.</p> <p>Results</p> <p>The latest advances in the field allowed us to use a technique of optimal Markov chain embedding based on deterministic finite automata to introduce three innovative algorithms. Algorithm 1 is the only one able to deal with heterogeneous models. It also permits to avoid any product of convolution of the pattern distribution in individual sequences. When working with homogeneous models, Algorithm 2 yields a dramatic reduction in the complexity by taking advantage of previous computations to obtain moment generating functions efficiently. In the particular case of low or moderate complexity patterns, Algorithm 3 exploits power computation and binary decomposition to further reduce the time complexity to a logarithmic scale. All these algorithms and their relative interest in comparison with existing ones were then tested and discussed on a toy-example and three biological data sets: structural patterns in protein loop structures, PROSITE signatures in a bacterial proteome, and transcription factors in upstream gene regions. On these data sets, we also compared our exact approaches to the tempting approximation that consists in concatenating the sequences in the data set into a single sequence.</p> <p>Conclusions</p> <p>Our algorithms prove to be effective and able to handle real data sets with multiple sequences, as well as biological patterns of interest, even when the latter display a high complexity (PROSITE signatures for example). In addition, these exact algorithms allow us to avoid the edge effect observed under the single sequence approximation, which leads to erroneous results, especially when the marginal distribution of the model displays a slow convergence toward the stationary distribution. We end up with a discussion on our method and on its potential improvements.</p

    Polymorphisms in DNA-repair genes in a cohort of prostate cancer patients from different areas in Spain: heterogeneity between populations as a confounding factor in association studies

    Get PDF
    Background: Differences in the distribution of genotypes between individuals of the same ethnicity are an important confounder factor commonly undervalued in typical association studies conducted in radiogenomics. Objective: To evaluate the genotypic distribution of SNPs in a wide set of Spanish prostate cancer patients for determine the homogeneity of the population and to disclose potential bias. Design, Setting, and Participants: A total of 601 prostate cancer patients from Andalusia, Basque Country, Canary and Catalonia were genotyped for 10 SNPs located in 6 different genes associated to DNA repair: XRCC1 (rs25487, rs25489, rs1799782), ERCC2 (rs13181), ERCC1 (rs11615), LIG4 (rs1805388, rs1805386), ATM (rs17503908, rs1800057) and P53 (rs1042522). The SNP genotyping was made in a Biotrove OpenArrayH NT Cycler. Outcome Measurements and Statistical Analysis: Comparisons of genotypic and allelic frequencies among populations, as well as haplotype analyses were determined using the web-based environment SNPator. Principal component analysis was made using the SnpMatrix and XSnpMatrix classes and methods implemented as an R package. Non-supervised hierarchical cluster of SNP was made using MultiExperiment Viewer. Results and Limitations: We observed that genotype distribution of 4 out 10 SNPs was statistically different among the studied populations, showing the greatest differences between Andalusia and Catalonia. These observations were confirmed in cluster analysis, principal component analysis and in the differential distribution of haplotypes among the populations. Because tumor characteristics have not been taken into account, it is possible that some polymorphisms may influence tumor characteristics in the same way that it may pose a risk factor for other disease characteristics. Conclusion: Differences in distribution of genotypes within different populations of the same ethnicity could be an important confounding factor responsible for the lack of validation of SNPs associated with radiation-induced toxicity, especially when extensive meta-analysis with subjects from different countries are carried out

    A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies

    Get PDF
    BACKGROUND: The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA) sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling. RESULTS: The 152,254 bp Chlorokybus cpDNA closely resembles its Mesostigma homologue at the gene content and gene order levels. Using various methods of phylogenetic inference, we analyzed amino acid and nucleotide data sets that were derived from 45 protein-coding genes common to the cpDNAs of 37 green algal/land plant taxa and eight non-green algae. Unexpectedly, all best trees recovered a robust clade uniting Chlorokybus and Mesostigma. In protein trees, this clade was sister to all streptophytes and chlorophytes and this placement received moderate support. In contrast, gene trees provided unequivocal support to the notion that the Mesostigma + Chlorokybus clade represents the earliest-diverging branch of the Streptophyta. Independent analyses of structural data (gene content and/or gene order) and of subsets of amino acid data progressively enriched in slow-evolving sites led us to conclude that the latter topology reflects the true organismal relationships. CONCLUSION: In disclosing a sister relationship between the Mesostigmatales and Chlorokybales, our study resolves the long-standing debate about the nature of the unicellular flagellated ancestors of land plants and alters significantly our concepts regarding the evolution of streptophyte algae. Moreover, in predicting a richer chloroplast gene repertoire than previously inferred for the common ancestor of all streptophytes, our study has contributed to a better understanding of chloroplast genome evolution in the Viridiplantae

    Association between Alcohol Consumption and Cancers in the Chinese Population—A Systematic Review and Meta-Analysis

    Get PDF
    Alcohol consumption is increasing worldwide and is associated with numerous cancers. This systematic review examined the role of alcohol in the incidence of cancer in the Chinese population.Medline/PubMed, EMBASE, CNKI and VIP were searched to identify relevant studies. Cohort and case-control studies on the effect of alcohol use on cancers in Chinese were included. Study quality was evaluated using the Newcastle-Ottawa Scale. Data were independently abstracted by two reviewers. Odds ratios (OR) or relative risks (RR) were pooled using RevMan 5.0. Heterogeneity was evaluated using the Q test and I-squared statistic. P<.01 was considered statistically significant.Pooled results from cohort studies indicated that alcohol consumption was not associated with gastric cancer, esophageal cancers (EC) or lung cancer. Meta-analysis of case-control studies showed that alcohol consumption was a significant risk factor for five cancers; the pooled ORs were 1.79 (99% CI, 1.47–2.17) EC, 1.40 (99% CI, 1.19–1.64) gastric cancer, 1.56 (99% CI, 1.16–2.09) hepatocellular carcinoma, 1.21 (99% CI, 1.00–1.46) nasopharyngeal cancer and 1.71 (99% CI, 1.20–2.44) oral cancer. Pooled ORs of the case-control studies showed that alcohol consumption was protective for female breast cancer and gallbladder cancer: OR 0.76 (99% CI, 0.60–0.97) and 0.70 (99% CI, 0.49–1.00) respectively. There was no significant correlation between alcohol consumption and lung cancer, colorectal cancer, pancreatic cancer, cancer of the ampulla of Vater, prostate cancer or extrahepatic cholangiocarcinoma. Combined results of case-control and cohort studies showed that alcohol consumption was associated with 1.78- and 1.40-fold higher risks of EC and gastric cancer but was not significantly associated with lung cancer.Health programs focused on limiting alcohol intake may be important for cancer control in China. Further studies are needed to examine the interaction between alcohol consumption and other risk factors for cancers in Chinese and other populations

    A Comprehensive Investigation on Common Polymorphisms in the MDR1/ABCB1 Transporter Gene and Susceptibility to Colorectal Cancer

    Get PDF
    ATP Binding Cassette B1 (ABCB1) is a transporter with a broad substrate specificity involved in the elimination of several carcinogens from the gut. Several polymorphic variants within the ABCB1 gene have been reported as modulators of ABCB1-mediated transport. We investigated the impact of ABCB1 genetic variants on colorectal cancer (CRC) risk. A hybrid tagging/functional approach was performed to select 28 single nucleotide polymorphisms (SNPs) that were genotyped in 1,321 Czech subjects, 699 CRC cases and 622 controls. In addition, six potentially functional SNPs were genotyped in 3,662 German subjects, 1,809 cases and 1,853 controls from the DACHS study. We found that three functional SNPs (rs1202168, rs1045642 and rs868755) were associated with CRC risk in the German population. Carriers of the rs1202168_T and rs868755_T alleles had an increased risk for CRC (Ptrend = 0.016 and 0.029, respectively), while individuals bearing the rs1045642_C allele showed a decreased risk of CRC (Ptrend = 0.022). We sought to replicate the most significant results in an independent case-control study of 3,803 subjects, 2,169 cases and 1,634 controls carried out in the North of Germany. None of the SNPs tested were significantly associated with CRC risk in the replication study. In conclusion, in this study of about 8,800 individuals we show that ABCB1 gene polymorphisms play at best a minor role in the susceptibility to CRC

    Polymorphisms of genes coding for insulin-like growth factor 1 and its major binding proteins, circulating levels of IGF-I and IGFBP-3 and breast cancer risk: results from the EPIC study

    Get PDF
    Insulin-like growth factor I (IGF-I) stimulates cell proliferation and can enhance the development of tumours in different organs. Epidemiological studies have shown that an elevated level of circulating IGF-I is associated with increased risk of breast cancer, as well as of other cancers. Most of circulating IGF-I is bound to an acid-labile subunit and to one of six insulin-like growth factor binding proteins (IGFBPs), among which the most important are IGFBP-3 and IGFBP-1. Polymorphisms of the IGF1 gene and of genes encoding for the major IGF-I carriers may predict circulating levels of IGF-I and have an impact on cancer risk. We tested this hypothesis with a case–control study of 807 breast cancer patients and 1588 matched control subjects, nested within the European Prospective Investigation into Cancer and Nutrition. We genotyped 23 common single nucleotide polymorphisms in IGF1, IGFBP1, IGFBP3 and IGFALS, and measured serum levels of IGF-I and IGFBP-3 in samples of cases and controls. We found a weak but significant association of polymorphisms at the 5′ end of the IGF1 gene with breast cancer risk, particularly among women younger than 55 years, and a strong association of polymorphisms located in the 5′ end of IGFBP3 with circulating levels of IGFBP-3, which confirms previous findings. Common genetic variation in these candidate genes does not play a major role in altering breast cancer risk in Caucasians
    corecore