8 research outputs found

    Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective

    Get PDF
    The present day energy supply scenario is unsustainable and the transition towards a more environmentally friendly energy supply system of the future is inevitable. Hydrogen is a potential fuel that is capable of assisting with this transition. Certain technological advancements and design challenges associated with hydrogen generation and fuel cell technologies are discussed in this review. The commercialization of hydrogen-based technologies is closely associated with the development of the fuel cell industry. The evolution of fuel cell electric vehicles and fuel cell-based stationary power generation products in the market are discussed. Furthermore, the opportunities and threats associated with the market diffusion of these products, certain policy implications, and roadmaps of major economies associated with this hydrogen transition are discussed in this review

    A Review on Electric and Fuel Cell Vehicle Anatomy, Technology Evolution and Policy Drivers towards EVs and FCEVs Market Propagation

    Get PDF
    The transportation sector is the largest consumer of fossil fuels; making it a major producer of greenhouse gases. Due to declining fossil fuel reserves and increasingly stringent vehicle emission regulations globally, it is essential to shift to alternative energy sources. Economic and eco-friendly fuel-efficient hybrid, electric, and fuel cell vehicles are regarded as one of the best alternative solutions to cope with the government policies and to reduce the rise in global temperature caused by the automotive sector. Technological advancements in fuel cells, batteries, and chargers have further supported the development of electric vehicles. The major challenges of range and charging time in electric vehicles can be countered by range extension technology and developing all-electric hybrid vehicles. In this review, a comprehensive study of different type of vehicles and their architectures are presented. Insights on energy storage devices and converters of electric vehicles currently in use were also provided. Furthermore, various fuel cell advancements and the technical challenges faced during the commercialization of fuel cell vehicles were highlighted

    A study of the influence of current ramp rate on the performance of polymer electrolyte membrane fuel cell

    No full text
    Durability and reliability are the key factors that prevent fuel cells from successful implementation in automotive sector. Dynamic load change is a common and frequent condition that the fuel cell has to undergo in automotive applications. Fuel cells are more sensitive to changes in load conditions and degrade based on load variation representing idling, rated power, and high power operating conditions. To examine the influence of dynamic load step on the fuel cell performance, two similar cells of active 25 cm2 was tested under two different load step for the same dynamic load cycle. The main difference in dynamic load cycle 2 was the ramp rate which was fixed as 0.1, 0.3, and 0.25 A/cm2/s for 0.2, 0.6, and 1.0 A/cm2 respectively. To investigate the degradative effects, polarization curves, electrochemical impedance spectroscopy, and field emission scanning electron microscopy were used. The results indicated that the degradation rate increased in both dynamic load cycles but however the impact of load change was comparatively minimal in dynamic load cycle 2. The total degradation in performance was 20.67% and 10.72% in dynamic load cycles 1 and 2 respectively. Fuel cell performance degraded in a manner that was consistent with the electrochemical impedance spectroscopy and cross-sectional analysis of field emission scanning electron microscopy. The results prove that the degradation rate is dependent on the load step and the number of load cycles. Severe catalyst degradation and delamination were observed in fuel cells operated under dynamic load cycle 1.Validerad;2023;NivÄ 2;2023-01-03 (joosat);Licens full-text: CC BY License</p

    Experimental study of temperature distribution effect on proton exchange membrane fuel cell using multi-pass serpentine channels

    No full text
    The uniform temperature distribution is one of the key features to consider in proton exchange membrane fuel cells (PEMFC) to increase performance and minimize the local hot spot formation on the membrane for longer membrane life. This work experimentally investigates the performance and temperature distribution on a 70 cm2 PEMFC with 1, 3, and 6-pass serpentine flow channels. The experimental results revealed that the 3-pass serpentine configuration showed better performance with peak a power density of 0.279 W/cm2, and the corresponding values obtained in 1 and 6-pass configurations are 0.246 and 0.228 W/cm2, respectively. To establish the temperature distribution, 20 thermocouples were provided in cathode plate and the temperature at different locations is mapped. The maximum cell temperature in 3-pass serpentine is limited to 69.76 °C due to enhanced reactant distribution and temperature uniformity. However, in 1 and 6-pass serpentine, the higher cell temperature is reported due to low temperature uniformity compared to the 3-pass serpentine design

    Scaled up on direct methanol fuel cell under different operating conditions

    No full text
    A direct methanol fuel cell with an active area of 100 cm2 was tested experimentally under a variety of operating situations to determine its overall performance. Different operational parameters, such as anode flow rate (1–5 ml/min), cathode reactant (Air/Oxygen) and cathode flow rate (100–2000 ml/min) are the most influencing parameter, and the performance output of each parameter are compared. In addition, different cathode flow channels, such as serpentine and sinuous, are used to improve reactant supply, and their performance is compared with one another. Using sinuous flow field at the cathode and 3 ml/min of methanol and 500 ml/min of oxygen, the maximum power density of 24 mW/cm2 has been achieved

    Study of novel flow channels influence on the performance of direct methanol fuel cell

    No full text
    The existing flow channels like parallel and gird channels have been modified for better fuel distribution in order to boost the performance of direct methanol fuel cell. The main objective of the work is to achieve minimized pressure drop in the flow channel, uniform distribution of methanol, reduced water accumulation, and better oxygen supply. A 3D mathematical model with serpentine channel is simulated for the cell temperature of 80 °C, 0.5 M methanol concentration. The study resulted in 40 mW/cm2 of power density and 190 mA/cm2 of current density at the operating voltage of 0.25 V. Further, the numerical study is carried out for modified flow channels to discuss their merits and demerits on anode and cathode side. The anode serpentine channel is unmatched by the modified zigzag and pin channels by ensuring the better methanol distribution under the ribs and increased the fuel consumption. But the cathode serpentine channel is lacking in water management. The modified channels at anode offered reduced pressure drop, still uniform reactant distribution is found impossible. The modified channels at cathode outperform the serpentine channel by reducing the effect of water accumulation, and uniform oxygen supply. So the serpentine channel is retained for methanol supply, and modified channel is chosen for cathode reactant supply. In comparison to cell with only serpentine channel, the serpentine anode channel combined with cathode zigzag and pin channel enhanced power density by 17.8% and 10.2% respectively. The results revealed that the zigzag and pin channel are very effective in mitigating water accumulation and ensuring better oxygen supply at the cathode

    Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles

    No full text
    Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant-pathogen interaction. For instance, several species from the Xanthomonas genus are able to up-regulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of TAL-effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as over-expression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant-pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant-pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.Fundação para a CiĂȘncia e Tecnologia (FCT), under the strategic programmes UID/AGR/04033/2020 and UID/BIA/04050/2020. This work was also supported by FCT and European Funds (FEDER/POCI/COMPETE2020) through the research project “MitiVineDrought—Combining ‘omics’ with molecular, biochemical, and physiological analyses as an integrated effort to validate novel and easy-to-implement drought mitigation strategies in grapevine while reducing water use” with ref. PTDC/BIA-FBT/30341/2017 and ref. POCI-01-0145-FEDER-030341, respectively; through the research project “BerryPlastid—Biosynthesis of secondary compounds in the grape berry: unlocking the role of the plastid” with ref. POCI-01-0145-FEDER-028165 and ref. PTDC/BIA-FBT/28165/2017, respectively; and also through the FCT-funded research project “GrapeInfectomics” (PTDC/ASPHOR/28485/2017). A.C. was supported with a post-doctoral researcher contract/position within the project “MitiVineDrought” (PTDC/BIA-FBT/30341/2017 and POCI-01-0145-FEDER-030341). R.B. was supported by a PhD student grant (PD/BD/113616/2015) under the Doctoral Programme “Agricultural Production Chains—from fork to farm” (PD/00122/2012) funded by FCT. H.B. was supported by a PhD fellowship funded by FCT (SFRH/BD/144638/2019). This work also benefited from the networking activities within the European Union-funded COST Action CA17111 “INTEGRAPE—Data Integration to maximize the power of omics for grapevine improvement”info:eu-repo/semantics/publishedVersio
    corecore