333 research outputs found

    Parallel Measurement and Modeling of Transport in the Darht II Beamline on ETA II

    Full text link
    To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model is coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach

    A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal

    Get PDF
    Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal

    Habitable Zones in the Universe

    Full text link
    Habitability varies dramatically with location and time in the universe. This was recognized centuries ago, but it was only in the last few decades that astronomers began to systematize the study of habitability. The introduction of the concept of the habitable zone was key to progress in this area. The habitable zone concept was first applied to the space around a star, now called the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable zones have been proposed. We review the historical development of the concept of habitable zones and the present state of the research. We also suggest ways to make progress on each of the habitable zones and to unify them into a single concept encompassing the entire universe.Comment: 71 pages, 3 figures, 1 table; to be published in Origins of Life and Evolution of Biospheres; table slightly revise

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    Population genetic structure of Aedes polynesiensis in the Society Islands of French Polynesia: implications for control using a Wolbachia-based autocidal strategy

    Get PDF
    Abstract Background Aedes polynesiensis is the primary vector of Wuchereria bancrofti in the South Pacific and an important vector of dengue virus. An improved understanding of the mosquito population genetics is needed for insight into the population dynamics and dispersal, which can aid in understanding the epidemiology of disease transmission and control of the vector. In light of the potential release of a Wolbachia infected strain for vector control, our objectives were to investigate the microgeographical and temporal population genetic structure of A. polynesiensis within the Society Islands of French Polynesia, and to compare the genetic background of a laboratory strain intended for release into its population of origin. Methods A panel of eight microsatellite loci were used to genotype A. polynesiensis samples collected in French Polynesia from 2005-2008 and introgressed A. polynesiensis and Aedes riversi laboratory strains. Examination of genetic differentiation was performed using F-statistics, STRUCTURE, and an AMOVA. BAYESASS was used to estimate direction and rates of mosquito movement. Results FST values, AMOVA, and STRUCTURE analyses suggest low levels of intra-island differentiation from multiple collection sites on Tahiti, Raiatea, and Maupiti. Significant pair-wise FST values translate to relatively minor levels of inter-island genetic differentiation between more isolated islands and little differentiation between islands with greater commercial traffic (i.e., Tahiti, Raiatea, and Moorea). STRUCTURE analyses also indicate two population groups across the Society Islands, and the genetic makeup of Wolbachia infected strains intended for release is similar to that of wild-type populations from its island of origin, and unlike that of A. riversi. Conclusions The observed panmictic population on Tahiti, Raiatea, and Moorea is consistent with hypothesized gene flow occurring between islands that have relatively high levels of air and maritime traffic, compared to that of the more isolated Maupiti and Tahaa. Gene flow and potential mosquito movement is discussed in relation to trials of applied autocidal strategies.</p

    Extrasolar planet population synthesis II: Statistical comparison with observation

    Full text link
    This is the second paper in a series of papers showing the results of extrasolar planet population synthesis calculations. In the companion paper (Paper I), we have presented in detail our methods. By applying an observational detection bias for radial velocity surveys, we identify the potentially detectable synthetic planets. The properties of these planets are compared in quantitative statistical tests with the properties of a carefully selected sub-population of actual exoplanets. We use a two dimensional Kolmogorov-Smirnov test to compare the mass-distance distributions of synthetic and observed planets, as well as 1D KS tests to compare the mass, the semimajor axis and the [Fe/H] distributions. We find that some models can account to a reasonable degree of significance for the observed properties. We concurrently account for many other observed features, e.g. the "metallicity effect". This gives us confidence that our model captures several essential features of giant planet formation. Our simulations allow us also to extract the properties of the underlying exoplanet population that are not yet detectable. For example, we have derived the planetary initial mass function (PIMF) and have been led to conclude that the planets detected so far represent only the tip of the iceberg. The PIMF can also be used to predict how the detectable extrasolar planet population will change as the precision of radial velocity surveys improves to an extreme precision of 0.1 m/s.Comment: 25 pages, 16 figures. Accepted for publication in Astronomy and Astrophysic

    DARHT II Scaled Accelerator Tests on the ETA II Accelerator

    Get PDF
    The DARHT II accelerator at LANL is preparing a series of preliminary tests at the reduced voltage of 7.8 MeV. The transport hardware between the end of the accelerator and the final target magnet was shipped to LLNL and installed on ETA II. Using the ETA II beam at 5.2 MeV we completed a set of experiments designed reduce start up time on the DARHT II experiments and run the equipment in a configuration adapted to the reduced energy. Results of the beam transport using a reduced energy beam, including the kicker and kicker pulser system will be presented

    In Search of a Trade Mark: Search Practices and Bureaucratic Poetics

    Get PDF
    Trade marks have been understood as quintessential ‘bureaucratic properties’. This article suggests that the making of trade marks has been historically influenced by bureaucratic practices of search and classification, which in turn were affected by the possibilities and limits of spatial organisation and technological means of access and storage. It shows how the organisation of access and retrieval did not only condition the possibility of conceiving new trade marks, but also served to delineate their intangible proprietary boundaries. Thereby they framed the very meaning of a trade mark. By advancing a historical analysis that is sensitive to shifts, both in actual materiality and in the administrative routines of trade mark law, the article highlights the legal form of trade mark as inherently social and materially shaped. We propose a historical understanding of trade mark law that regards legal practice and bureaucratic routines as being co-constitutive of the very legal object itself

    Genetic Association for Renal Traits among Participants of African Ancestry Reveals New Loci for Renal Function

    Get PDF
    Chronic kidney disease (CKD) is an increasing global public health concern, particularly among populations of African ancestry. We performed an interrogation of known renal loci, genome-wide association (GWA), and IBC candidate-gene SNP association analyses in African Americans from the CARe Renal Consortium. In up to 8,110 participants, we performed meta-analyses of GWA and IBC array data for estimated glomerular filtration rate (eGFR), CKD (eGFR <60 mL/min/1.73 m2), urinary albumin-to-creatinine ratio (UACR), and microalbuminuria (UACR >30 mg/g) and interrogated the 250 kb flanking region around 24 SNPs previously identified in European Ancestry renal GWAS analyses. Findings were replicated in up to 4,358 African Americans. To assess function, individually identified genes were knocked down in zebrafish embryos by morpholino antisense oligonucleotides. Expression of kidney-specific genes was assessed by in situ hybridization, and glomerular filtration was evaluated by dextran clearance. Overall, 23 of 24 previously identified SNPs had direction-consistent associations with eGFR in African Americans, 2 of which achieved nominal significance (UMOD, PIP5K1B). Interrogation of the flanking regions uncovered 24 new index SNPs in African Americans, 12 of which were replicated (UMOD, ANXA9, GCKR, TFDP2, DAB2, VEGFA, ATXN2, GATM, SLC22A2, TMEM60, SLC6A13, and BCAS3). In addition, we identified 3 suggestive loci at DOK6 (p-value = 5.3×10−7) and FNDC1 (p-value = 3.0×10−7) for UACR, and KCNQ1 with eGFR (p = 3.6×10−6). Morpholino knockdown of kcnq1 in the zebrafish resulted in abnormal kidney development and filtration capacity. We identified several SNPs in association with eGFR in African Ancestry individuals, as well as 3 suggestive loci for UACR and eGFR. Functional genetic studies support a role for kcnq1 in glomerular development in zebrafish
    • …
    corecore