105 research outputs found
A multidimensional metabolomics workflow to image biodistribution and evaluate pharmacodynamics in adult zebrafish
An integrated evaluation of the tissue distribution and pharmacodynamic properties of a therapeutic is essential for successful translation to the clinic. To date, however, cost-effective methods to measure these parameters at the systems level in model organisms are lacking. Here, we introduce a multidimensional workflow to evaluate drug activity that combines mass spectrometry-based imaging, absolute drug quantitation across different biological matrices, in vivo isotope tracing and global metabolome analysis in the adult zebrafish. As a proof of concept, we quantitatively determined the whole-body distribution of the anti-rheumatic agent hydroxychloroquine sulfate (HCQ) and measured the systemic metabolic impacts of drug treatment. We found that HCQ distributed to most organs in the adult zebrafish 24 h after addition of the drug to water, with the highest accumulation of both the drug and its metabolites being in the liver, intestine and kidney. Interestingly, HCQ treatment induced organ-specific alterations in metabolism. In the brain, for example, HCQ uniquely elevated pyruvate carboxylase activity to support increased synthesis of the neuronal metabolite, N-acetylaspartate. Taken together, this work validates a multidimensional metabolomics platform for evaluating the mode of action of a drug and its potential off-target effects in the adult zebrafish. This article has an associated First Person interview with the first author of the paper
The proteome of extracellular vesicles released by clastic cells differs based on their substrate
Extracellular vesicles (EVs) from osteoclasts are important regulators in intercellular communication. Here, we investigated the proteome of EVs from clastic cells plated on plastic
(clasts), bone (osteoclasts) and dentin (odontoclasts) by two-dimensional high performance
liquid chromatography mass spectrometry seeking differences attributable to distinct mineralized matrices. A total of 1,952 proteins were identified. Of the 500 most abundant proteins
in EVs, osteoclast and odontoclast EVs were 83.3% identical, while clasts shared 70.7% of
the proteins with osteoclasts and 74.2% of proteins with odontoclasts. For each protein, the
differences between the total ion count values were mapped to an expression ratio histogram (Z-score) in order to detect proteins differentially expressed. Stabilin-1 and macrophage mannose receptor-1 were significantly-enriched in EVs from odontoclasts compared
with osteoclasts (Z = 2.45, Z = 3.34) and clasts (Z = 13.86, Z = 1.81) and were abundant in
odontoclast EVs. Numerous less abundant proteins were differentially-enriched. Subunits of
known protein complexes were abundant in clastic EVs, and were present at levels consistent with them being in assembled protein complexes. These included the proteasome,
COP1, COP9, the T complex and a novel sub-complex of vacuolar H+
-ATPase (V-ATPase),
which included the (pro) renin receptor. The (pro) renin receptor was immunoprecipitated
using an anti-E-subunit antibody from detergent-solubilized EVs, supporting the idea that
the V-ATPase subunits present were in the same protein complex. We conclude that the
protein composition of EVs released by clastic cells changes based on the substrate. Clastic
EVs are enriched in various protein complexes including a previously undescribed VATPase sub-complex
Open letter from UK based academic scientists to the secretaries of state for digital, culture, media and sport and for health and social care regarding the need for independent funding for the prevention and treatment of gambling harms
First paragraph: Dear secretaries of state, As leading academic scientists studying gambling behaviours and its harms, we are writing to express our concern about the continuing support shown for the voluntary system of funding treatment, prevention and research in Great Britain. We feel compelled to write to you following the Betting and Gaming Council’s (BGC) recent announcement (17 June 2020) that five of its operators will now allocate the long awaited increase in funding for prevention and treatment, first promised on 2 August 2019, to GambleAware rather than the charity Action Against Gambling Harms. Irrespective of which organisation funds are given to, the BGC’s announcement exemplifies the longstanding weakness of a funding system that allows the gambling industry to regulate the availability and distribution of vital funds to address gambling harms across our communities. As we outline below, the continuance of this arrangement produces several negative effects that undermine the collective effort to reduce harms from gambling. It is also our belief that funds for research into gambling harms and their reduction should primarily be distributed through recognised independent organisations, such as UK Research and Innovation. We hereby urge you, as the secretaries of state with responsibilities for addressing gambling harms, to implement a statutory levy to fund effective prevention and treatment of gambling harms that is free both from industry influence and the perception of industry influence...... [Read more in the article]Additional co-authors: Carolyn Downs, Simon Dymond, Emanuele Fino, Elizabeth Goyder, Cindy Gray, Mark Griffiths, Peter Grindrod, Lee Hogan, Alice Hoon, Richard James, Bev John, Jill Manthorpe, Jim McCambridge, David McDaid, Martin McKee, Sally McManus, Antony Moss, Caroline Norrie, David J Nutt, Jim Orford, Rob Pryce, Gerda Reith, Amanda Roberts, Emmett Roberts, Gareth Roderique-Davies, Jim Rogers, Robert D Rogers, Stephen Sharman, John Strang, Richard Tunney, John Turner, Robert West, David Zendl
Recommended from our members
Efficient hydrolytic hydrogen evolution from sodium borohydride catalyzed by polymer immobilized ionic liquid‐stabilized platinum nanoparticles
Platinum nanoparticles stabilized by imidazolium‐based phosphine‐decorated Polymer Immobilized Ionic Liquids (PPh2‐PIIL) catalyze the hydrolytic evolution of hydrogen from sodium borohydride with remarkable efficiency, under mild conditions. The composition of the polymer influences efficiency with the catalyst based on a polyethylene glycol modified imidazolium monomer (PtNP@PPh2‐PEGPIILS) more active than its N‐alkylated counterpart (PtNP@PPh2‐N‐decylPIILS). The maximum initial TOF of 169 moleH2.molcat−1.min−1 obtained at 30 °C with a catalyst loading of 0.08 mol% is among the highest to be reported for the aqueous phase hydrolysis of sodium borohydride catalyzed by a PtNP‐based system. Kinetic studies revealed that the apparent activation energy (Ea) of 23.9 kJ mol−1 for the hydrolysis of NaBH4 catalyzed by PtNP@PPh2‐PEGPIILS is significantly lower than that of 35.6 kJ mol−1 for PtNP@PPh2‐N‐decylPIILS. Primary kinetic isotope effects kH/kD of 1.8 and 2.1 obtained with PtNP@PPh2‐PEGPIILS and PtNP@PPh2‐N‐decylPIILS, respectively, for the hydrolysis with D2O support a mechanism involving rate determining oxidative addition or σ‐bond metathesis of the O−H bond. Catalyst stability and reuse studies showed that PtNP@PPh2‐PEGPIILS retained 70 % of its activity across five runs; the gradual drop in conversion appears to be due to poisoning of the catalyst by the accumulated metaborate product as well as the increased viscosity of the reaction mixture
Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past
The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs
Activation and Deactivation of a Robust Immobilized Cp*Ir-Transfer Hydrogenation Catalyst: A Multielement in Situ X-ray Absorption Spectroscopy Study
A highly robust immobilized [Cp*IrCl2]2 precatalyst on Wang resin for transfer hydrogenation, which can be recycled up to 30 times, was studied using a novel combination of X-ray absorption spectroscopy (XAS) at Ir L3-edge, Cl K-edge, and K K-edge. These culminate in in situ XAS experiments that link structural changes of the Ir complex with its catalytic activity and its deactivation. Mercury poisoning and “hot filtration” experiments ruled out leached Ir as the active catalyst. Spectroscopic evidence indicates the exchange of one chloride ligand with an alkoxide to generate the active precatalyst. The exchange of the second chloride ligand, however, leads to a potassium alkoxide–iridate species as the deactivated form of this immobilized catalyst. These findings could be widely applicable to the many homogeneous transfer hydrogenation catalysts with Cp*IrCl substructure
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
- …