79 research outputs found

    Excretory/secretory products of the carcinogenic liver fluke are endocytosed by human cholangiocytes and drive cell proliferation and IL6 production

    Full text link
    © 2015 Australian Society for Parasitology Inc. Liver fluke infection caused by Opisthorchis viverrini remains a major public health problem in many parts of Asia including Thailand, Lao PDR, Vietnam and Cambodia, where there is a strikingly high incidence of cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium). Among other factors, uptake of O. viverrini excretory/secretory products (OvES) by biliary epithelial cells has been postulated to be responsible for chronic inflammation and proliferation of cholangiocytes, but the mechanisms by which cells internalise O. viverrini excretory/secretory products are still unknown. Herein we incubated normal human cholangiocytes (H69), human cholangiocarcinoma cells (KKU-100, KKU-M156) and human colon cancer (Caco-2) cells with O. viverrini excretory/secretory products and analysed the effects of different endocytic inhibitors to address the mechanism of cellular uptake of ES proteins. Opisthorchis viverrini excretory/secretory products was internalised preferentially by liver cell lines, and most efficiently/rapidly by H69 cells. There was no evidence for trafficking of ES proteins to cholangiocyte organelles, and most of the fluorescence was detected in the cytoplasm. Pretreatment with clathrin inhibitors significantly reduced the uptake of O. viverrini excretory/secretory products, particularly by H69 cells. Opisthorchis viverrini excretory/secretory products induced proliferation of liver cells (H69 and CCA lines) but not intestinal (Caco-2) cells, and proliferation was blocked using inhibitors of the classical endocytic pathways (clathrin and caveolae). Opisthorchis viverrini excretory/secretory products drove IL6 secretion by H69 cells but not Caco-2 cells, and cytokine secretion was significantly reduced by endocytosis inhibitors. This the first known study to address the endocytosis of helminth ES proteins by host epithelial cells and sheds light on the pathways by which this parasite causes one of the most devastating forms of cancer in south-eastern Asia

    Monoclonal antibodies targeting an opisthorchis viverrini extracellular vesicle tetraspanin protect hamsters against challenge infection

    Get PDF
    Opisthorchis viverrini causes severe pathology in the bile ducts of infected human hosts, and chronic infection can culminate in bile duct cancer. The prevention of infection by vaccination would decrease opisthorchiasis-induced morbidity and mortality. The tetraspanin protein, Ov-TSP-2, is located on the membrane of secreted extracellular vesicles (EVs), and is a candidate antigen for in-clusion in a subunit vaccine. To address the role of anti-Ov-TSP-2 antibodies in protection, we assessed the protective capacity of anti-Ov-TSP-2 monoclonal antibodies (mAbs) against opisthorchiasis. Two anti-TSP-2 IgM mAbs, 1D6 and 3F5, and an isotype control were passively transferred to hamsters, followed by parasite challenge one day later. Hamsters that received 3F5 had 74.5% fewer adult flukes and 67.4% fewer eggs per gram of feces compared to hamsters that received the control IgM. Both 1D6 and 3F5 (but not the control IgM) blocked the uptake of fluke EVs by human bile duct epithelial cells in vitro. This is the first report of passive immunization against human liver fluke infection, and the findings portend the feasibility of antibody-directed therapies for liver fluke infection, bolstering the selection of TSPs as components of a subunit vaccine for opisthorchiasis and fluke infections generally

    Small extracellular vesicles but not microvesicles from Opisthorchis viverrini promote cell proliferation in human cholangiocytes

    Get PDF
    Chronic infection with O. viverrini has been linked to the development of cholangiocarcinoma (CCA), which is a major public health burden in the Lower Mekong River Basin countries, including Thailand, Lao PDR, Vietnam and Cambodia. Despite its importance, the exact mechanisms by which O. viverrini promotes CCA are largely unknown. In this study, we characterized different extracellular vesicle populations released by O. viverrini (OvEVs) using proteomic and transcriptomic analyses and investigated their potential role in host-parasite interactions. While 120k OvEVs promoted cell proliferation in H69 cells at different concentrations, 15k OvEVs did not produce any effect compared to controls. The proteomic analysis of both populations showed differences in their composition that could contribute to this differential effect. Furthermore, the miRNAs present in 120k EVs were analysed and their potential interactions with human host genes was explored by computational target prediction. Different pathways involved in inflammation, immune response and apoptosis were identified as potentially targeted by the miRNAs present in this population of EVs. This is the first study showing specific roles for different EV populations in the pathogenesis of a parasitic helminth, and more importantly, an important advance towards deciphering the mechanisms used in establishment of opisthorchiasis and liver fluke infection-associated malignancy.This research was supported from a project grant from the National Health and Medical Research Council of Australia (NHMRC), grant identification number APP1085309, the National Cancer Institute, National Institutes of Health, award number R01CA164719, and the Fundamental Fund, Khon Kaen University. AL is supported by a Level Three NHMRC Investigator Grant APP2008450. JS is supported by a Ramon y Cajal fellowship (RYC2021-032443-I) from the Ministerio de Ciencia e Innovacion from Spain.N

    Carcinogenic Liver Fluke Secretes Extracellular Vesicles That Promote Cholangiocytes to Adopt a Tumorigenic Phenotype.

    Get PDF
    BACKGROUND: Throughout Asia, there is an unprecedented link between cholangiocarcinoma and infection with the liver fluke Opisthorchis viverrini. Multiple processes, including chronic inflammation and secretion of parasite proteins into the biliary epithelium, drive infection toward cancer. Until now, the mechanism and effects of parasite protein entry into cholangiocytes was unknown. METHODS: Various microscopy techniques were used to identify O. viverrini extracellular vesicles (EVs) and their internalization by human cholangiocytes. Using mass spectrometry we characterized the EV proteome and associated changes in cholangiocytes after EV uptake, and we detected EV proteins in bile of infected hamsters and humans. Cholangiocyte proliferation and interleukin 6 (IL-6) secretion was measured to assess the impact of EV internalization. RESULTS: EVs were identified in fluke culture medium and bile specimens from infected hosts. EVs internalized by cholangiocytes drove cell proliferation and IL-6 secretion and induced changes in protein expression associated with endocytosis, wound repair, and cancer. Antibodies to an O. viverrini tetraspanin blocked EV uptake and IL-6 secretion by cholangiocytes. CONCLUSIONS: This is the first time that EVs from a multicellular pathogen have been identified in host tissues. Our findings imply a role for O. viverrini EVs in pathogenesis and highlight an approach to vaccine development for this infectious cancer.This work was supported by a Project Grant (APP1085309) from the National Health and Medical Research Council of Australia (NHMRC). AL is supported by a NHMRC principal research fellowship. SC was supported by the Thailand Research Fund (TRF)-the Royal Golden Jubilee PhD scholarship (RGJ) through Dr. Banchob Sripa.This is the final version. It was first published by OUP at http://dx.doi.org/10.1093/infdis/jiv29

    Extracellular Vesicles in Liver Diseases: Meeting Report from the International Liver Congress 2018

    Get PDF
    Extracellular vesicles (EVs) are small and heterogeneous membrane-bound structures released by cells and found in all biological fluids. They are effective intercellular communicators, acting on a number of close and/or distant target cells. EV cargo may reflect the cell of origin as well as the specific stress that induces their formation and release. They transport a variety of bioactive molecules, including messenger RNA, noncoding RNAs, proteins, lipids, and metabolites, that can be transferred among cells, regulating various cell responses. Alteration in the concentration and composition of EVs in biological fluids is a typical hallmark of pathologies in different liver diseases. Circulating EVs can serve as biomarkers or as messengers following uptake by other cells. This review is a meeting report from the International Liver Congress 2018 (European Association for the Study of the Liver) celebrated in Paris (Symposium: Extracellular vesicles and signal transmission) that discusses the role of EVs in several liver diseases, highlighting their potential value as disease biomarkers and therapeutic opportunities

    Immunomics-guided discovery of serum and urine antibodies for diagnosing urogenital schistosomiasis:A biomarker identification study

    Get PDF
    Background: Sensitive diagnostics are needed for effective management and surveillance of schistosomiasis so that current transmission interruption goals set by WHO can be achieved. We aimed to screen the Schistosoma haematobium secretome to find antibody biomarkers of schistosome infection, validate their diagnostic performance in samples from endemic populations, and evaluate their utility as point of care immunochromatographic tests (POC-ICTs) to diagnose urogenital schistosomiasis in the field. Methods: We did a biomarker identification study, in which we constructed a proteome array containing 992 validated and predicted proteins from S haematobium and screened it with serum and urine antibodies from endemic populations in Gabon, Tanzania, and Zimbabwe. Arrayed antigens that were IgG-reactive and a select group of antigens from the worm extracellular vesicle proteome, predicted to be diagnostically informative, were then evaluated by ELISA using the same samples used to probe arrays, and samples from individuals residing in a low-endemicity setting (ie, Pemba and Unguja islands, Zanzibar, Tanzania). The two most sensitive and specific antigens were incorporated into POC-ICTs to assess their ability to diagnose S haematobium infection from serum in a field-deployable format. Findings: From array probing, in individuals who were infected, 208 antigens were the targets of significantly elevated IgG responses in serum and 45 antigens were the targets of significantly elevated IgG responses in urine. Of the five proteins that were validated by ELISA, Sh-TSP-2 (area under the curve [AUC]serum=0·98 [95% CI 0·95-1·00]; AUCurine=0·96 [0·93-0·99]), and MS3_01370 (AUCserum=0·93 [0·89-0·97]; AUCurine=0·81 [0·72-0·89]) displayed the highest overall diagnostic performance in each biofluid and exceeded that of S haematobium-soluble egg antigen in urine (AUC=0·79 [0·69-0·90]). When incorporated into separate POC-ICTs, Sh-TSP-2 showed absolute specificity and a sensitivity of 75% and MS3_01370 showed absolute specificity and a sensitivity of 89%. Interpretation: We identified numerous biomarkers of urogenital schistosomiasis that could form the basis of novel antibody diagnostics for this disease. Two of these antigens, Sh-TSP-2 and MS3_01370, could be used as sensitive, specific, and field-deployable diagnostics to support schistosomiasis control and elimination initiatives, with particular focus on post-elimination surveillance. Funding: Australian Trade and Investment Commission and Merck Global Health Institute

    Special considerations for studies of extracellular vesicles from parasitic helminths: A community‐led roadmap to increase rigour and reproducibility

    Full text link
    Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved

    Special considerations for studies of extracellular vesicles from parasitic helminths: a community-led roadmap to increase rigour and reproducibility

    Get PDF
    Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved

    Opisthorchiasis-Induced Cholangiocarcinoma: How Innate Immunity May Cause Cancer

    Get PDF
    Innate, inflammatory responses towards persistent Opisthorchis viverrini (OV) infection are likely to contribute to the development of cholangiocarcinoma (CCA), a liver cancer that is rare in the West but prevalent in Greater Mekong Subregion countries in Southeast Asia. Infection results in the infiltration of innate immune cells into the bile ducts and subsequent activation of inflammatory immune responses that fail to clear OV but instead may damage local tissues within the bile ducts. Not all patients infected with OV develop CCA, and so tumourigenesis may be dependent on multiple factors including the magnitude of the inflammatory response that is activated in infected individuals. The purpose of this review is to summarize how innate immune responses may promote tumourigenesis following OV infection and if such responses can be used to predict CCA onset in OV-infected individuals. It also hypothesizes on the role that Helicobacterspp., which are associated with liver fluke infections, may play in activation of the innate the immune system to promote tissue damage and persistent inflammation leading to CCA

    Immunomics-guided discovery of serum and urine antibodies for diagnosing urogenital schistosomiasis: a biomarker identification study

    Get PDF
    Background Sensitive diagnostics are needed for effective management and surveillance of schistosomiasis so that current transmission interruption goals set by WHO can be achieved. We aimed to screen the Schistosoma haematobium secretome to find antibody biomarkers of schistosome infection, validate their diagnostic performance in samples from endemic populations, and evaluate their utility as point of care immunochromatographic tests (POC-ICTs) to diagnose urogenital schistosomiasis in the field.Methods We did a biomarker identification study, in which we constructed a proteome array containing 992 validated and predicted proteins from S haematobium and screened it with serum and urine antibodies from endemic populations in Gabon, Tanzania, and Zimbabwe. Arrayed antigens that were IgG-reactive and a select group of antigens from the worm extracellular vesicle proteome, predicted to be diagnostically informative, were then evaluated by ELISA using the same samples used to probe arrays, and samples from individuals residing in a low-endemicity setting (ie, Pemba and Unguja islands, Zanzibar, Tanzania). The two most sensitive and specific antigens were incorporated into POC-ICTs to assess their ability to diagnose S haematobium infection from serum in a field-deployable format.Findings From array probing, in individuals who were infected, 208 antigens were the targets of significantly elevated IgG responses in serum and 45 antigens were the targets of significantly elevated IgG responses in urine. Of the five proteins that were validated by ELISA, Sh-TSP-2 (area under the curve [AUC](serum)=0.98 [95% CI 0.95-1.00]; AUC(urine)=0.96 [0.93-0.99]), and MS3_01370 (AUCserum=0.93 [0.89-0.97]; AUC(urine)=0.81 [0.72-0.89]) displayed the highest overall diagnostic performance in each biofluid and exceeded that of S haematobium-soluble egg antigen in urine (AUC=0.79 [0.69-0.90]). When incorporated into separate POC-ICTs, Sh-TSP-2 showed absolute specificity and a sensitivity of 75% and MS3_01370 showed absolute specificity and a sensitivity of 89%.Interpretation We identified numerous biomarkers of urogenital schistosomiasis that could form the basis of novel antibody diagnostics for this disease. Two of these antigens, Sh-TSP-2 and MS3_01370, could be used as sensitive, specific, and field-deployable diagnostics to support schistosomiasis control and elimination initiatives, with particular focus on post-elimination surveillance. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Host-parasite interactio
    corecore