52 research outputs found

    Muscle Mitochondrial Function at Different Phases of the Menstrual Cycle

    Get PDF
    The effect of menstrual cycle (MC) phase on muscle recovery from damage has been studied using markers of strength and soreness, but remains inconclusive. Mitochondrial function is essential for muscle recovery, and has been found to be influenced by estradiol (E2). Understanding the relationship between MC phase and mitochondria can provide further insight into women’s muscle health. The PURPOSE of this study was to determine how MC phase affects markers of muscle damage and recovery, with emphasis on mitochondrial function, following electrically-stimulated muscle contractions. METHODS: 22 premenopausal females were recruited and split into two groups, early follicular (EF) and late follicular (LF). After menstrual cycle tracking and phase confirmation, subjects performed a baseline maximum voluntary knee extension contraction (MVC) and provided a muscle biopsy one week prior to test day. On test day, subjects underwent 200 electrically stimulated eccentric muscle contractions (ES). Subjects reported for follow-up strength tests on days 2, 4, and 7 post damage, and gave a final biopsy on day 7. RESULTS: MVC decreased an average of 14 ± 6% immediately following ES and recovered to 6 ± 7% below baseline by day 4, with no differences between groups for percent decrease in MVC (p=.67). Average peak soreness was 4.0 ± 1.9, with no differences between groups (p=.91). Average change in max coupled mitochondrial respiration was -14.3 ± 15.5 pmolO2ᐧs-1ᐧmg-1 for the EF group and 1.3 ± 22.3 pmolO2ᐧs-1ᐧmg-1 for the LF group (p=.03). Average change in fatty acid supported respiration was -3.6 ± 7.4 pmolO2ᐧs-1ᐧmg-1 for the EF group and 7.5 ± 10.5 pmolO2ᐧs-1ᐧmg-1 for the LF group (p=.046). However, these results are complicated by baseline differences in respiration, with max coupled respiration being significantly higher (p=.02) in the mid-luteal phase (EF group baseline) than the early-follicular phase (LF group baseline). CONCLUSIONS: Results show novel findings that baseline mitochondrial respiration and mitochondrial response to damage differ between MC phases. This finding supports previous research relating mitochondrial function and E2 levels, and suggests further research on mitochondrial function throughout the menstrual cycle

    The effects of chronic AMPK activation on hepatic triglyceride accumulation and glycerol 3-phosphate acyltransferase activity with high fat feeding

    Get PDF
    BACKGROUND: High fat feeding increases hepatic fat accumulation and is associated with hepatic insulin resistance. AMP Activated Protein Kinase (AMPK) is thought to inhibit lipid synthesis by the acute inhibition of glycerol-3-phosphate acyltransferase (GPAT) activity and transcriptional regulation via sterol regulatory element binding protein-1c (SREBP-1c). METHODS: The purpose of this study was to determine if chronic activation of AMPK prevented an increase in GPAT1 activity in rats fed a high fat diet. Rats were fed a control (C), or a high fat (HF) diet (60% fat) for 6 weeks and injected with saline or a daily aminoimidazole carboxamide ribnucleotide (AICAR) dose of 0.5 mg/g body weight. RESULTS: Chronic AMPK activation by AICAR injections resulted in a significant reduction in hepatic triglyceride accumulation in both the C and HF fed animals (C, 5.5±0.7; C+AICAR, 2.7 ±0.3; HF, 21.8±3.3; and HF+AICAR, 8.0±1.8 mg/g liver). HF feeding caused an increase in total GPAT and GPAT1 activity, which was not affected by chronic AMPK activation (GPAT1 activity vs. C, C+AICAR, 92±19%; HF, 186±43%; HF+AICAR, 234±62%). Markers of oxidative capacity, including citrate synthase activity and cytochrome c abundance, were not affected by chronic AICAR treatment. Interestingly, HF feeding caused a significant increase in long chain acyl-CoA dehydrogenase or LCAD (up 66% from C), a marker of fatty acid oxidation capacity. CONCLUSIONS: These results suggest that chronic AMPK activation limits hepatic triglyceride accumulation independent of a reduction in total GPAT1 activity

    Deficiency of the Mitochondrial Electron Transport Chain in Muscle Does Not Cause Insulin Resistance

    Get PDF
    It has been proposed that muscle insulin resistance in type 2 diabetes is due to a selective decrease in the components of the mitochondrial electron transport chain and results from accumulation of toxic products of incomplete fat oxidation. The purpose of the present study was to test this hypothesis.Rats were made severely iron deficient, by means of an iron-deficient diet. Iron deficiency results in decreases of the iron containing mitochondrial respiratory chain proteins without affecting the enzymes of the fatty acid oxidation pathway. Insulin resistance was induced by feeding iron-deficient and control rats a high fat diet. Skeletal muscle insulin resistance was evaluated by measuring glucose transport activity in soleus muscle strips. Mitochondrial proteins were measured by Western blot. Iron deficiency resulted in a decrease in expression of iron containing proteins of the mitochondrial respiratory chain in muscle. Citrate synthase, a non-iron containing citrate cycle enzyme, and long chain acyl-CoA dehydrogenase (LCAD), used as a marker for the fatty acid oxidation pathway, were unaffected by the iron deficiency. Oleate oxidation by muscle homogenates was increased by high fat feeding and decreased by iron deficiency despite high fat feeding. The high fat diet caused severe insulin resistance of muscle glucose transport. Iron deficiency completely protected against the high fat diet-induced muscle insulin resistance.The results of the study argue against the hypothesis that a deficiency of the electron transport chain (ETC), and imbalance between the ETC and β-oxidation pathways, causes muscle insulin resistance

    International criteria for electrocardiographic interpretation in athletes: Consensus statement.

    Get PDF
    Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly, advanced by a growing body of scientific data and investigations that both examine proposed criteria sets and establish new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington (USA), to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD

    Contrasting Transcriptional Responses of a Virulent and an Attenuated Strain of Mycobacterium tuberculosis Infecting Macrophages

    Get PDF
    Along with the recent identification of single nucleotide polymorphisms in H37Ra when compared to H37Rv, our demonstration of differential expression of PhoP-regulated and ESX-1 region-related genes during macrophage infection further highlights the significance of these genes in the attenuation of H37Ra

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Metabolic and functional consequences of adenylate kinase deficiency in skeletal muscle

    No full text
    Includes bibliographical references."May 2005"The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.Vita.Dissertations, Academic -- University of Missouri--Columbia -- physiology (Medicine).Thesis (Ph. D.) University of Missouri-Columbia 2005.[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The primary function of skeletal muscle is to generate tension, and this ultimately occurs through ATP utilization. An increase in ADP and a depression in the cellular energy state are thought to be limited by the adenylate kinase (AK) reaction during high energy demands. AMP production through AK is also thought to be important for metabolic signaling, particularly during moderate energy demands. Thus, AK deficiency in muscle was evaluated during highly demanding and moderately demanding muscle contractions, using the AK1 knockout mouse (AK1-/-). The results demonstrate that AK deficiency leads to a marked elevation in free-ADP (1.5mM) at high energy demands, many fold greater than previously thought possible. These results call into question previously held views concerning the energy required for normal muscle function, because the performance was remarkably tolerant of ADP accumulation. At lower energy demands, AMPK phosphorylation was tempered in AK1-/- muscle consistent with reduced AMP production. Interestingly, other indicators of AMPK activity suggest that AMPK activation occurs normally, despite reduced AMPK phosphorylation. Thus, AK is critically important for the management of ADP during high energy demands, and may result in altered metabolic signaling at low energy demands
    corecore