12 research outputs found

    Collision of millimetre droplets induces DNA and protein transfection into cells

    Get PDF
    Nonperturbing and simple transfection methods are important for modern techniques used in biotechnology. Recently, we reported that electrospraying can be applied to DNA transfection in cell lines, bacteria, and chicken embryos. However, the transfection efficiency was only about 2%. To improve the transfection rate, physical properties of the sprayed droplets were studied in different variations of the method. We describe a highly efficient technique (30–93%) for introduction of materials such as DNA and protein into living cells by electrospraying droplets of a high conductivity liquid onto cells incubated with the material for transfection. Electric conductivity has a sizable influence on the success of transfection. In contrast, molecular weight of the transfected material, types of ions in the electrospray solution, and the osmotic pressure do not influence transfection efficiency. The physical analysis revealed that collision of cells with millimetre-sized droplets activates intracellular uptake

    Functional Adaptation of a Plant Receptor- Kinase Paved the Way for the Evolution of Intracellular Root Symbioses with Bacteria

    Get PDF
    Nitrogen-fixing root nodule symbioses (RNS) occur in two major forms—Actinorhiza and legume-rhizobium symbiosis—which differ in bacterial partner, intracellular infection pattern, and morphogenesis. The phylogenetic restriction of nodulation to eurosid angiosperms indicates a common and recent evolutionary invention, but the molecular steps involved are still obscure. In legumes, at least seven genes—including the symbiosis receptor-kinase gene SYMRK—are essential for the interaction with rhizobia bacteria and for the Arbuscular Mycorrhiza (AM) symbiosis with phosphate-acquiring fungi, which is widespread in occurrence and believed to date back to the earliest land plants. We show that SYMRK is also required for Actinorhiza symbiosis of the cucurbit Datisca glomerata with actinobacteria of the genus Frankia, revealing a common genetic basis for both forms of RNS. We found that SYMRK exists in at least three different structural versions, of which the shorter forms from rice and tomato are sufficient for AM, but not for functional endosymbiosis with bacteria in the legume Lotus japonicus. Our data support the idea that SYMRK sequence evolution was involved in the recruitment of a pre-existing signalling network from AM, paving the way for the evolution of intracellular root symbioses with nitrogen-fixing bacteria

    Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes

    Get PDF
    Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the “International Year of pulses”. Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes
    corecore