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Abstract Grain legumes are a cost-effective alternative for

the animal protein in improving the diets of the poor in

South-East Asia and Africa. Legumes, through symbiotic

nitrogen fixation, meet a major part of their own N demand

and partially benefit the following crops of the system by

enriching soil. In realization of this sustainability advan-

tage and to promote pulse production, United Nations had

declared 2016 as the ‘‘International Year of pulses’’. Grain

legumes are frequently subjected to both abiotic and biotic

stresses resulting in severe yield losses. Global yields of

legumes have been stagnant for the past five decades in

spite of adopting various conventional and molecular

breeding approaches. Furthermore, the increasing costs and

negative effects of pesticides and fertilizers for crop pro-

duction necessitate the use of biological options of crop

production and protection. The use of plant growth-pro-

moting (PGP) bacteria for improving soil and plant health

has become one of the attractive strategies for developing

sustainable agricultural systems due to their eco-friendli-

ness, low production cost and minimizing consumption of

non-renewable resources. This review emphasizes on how

the PGP actinobacteria and their metabolites can be used

effectively in enhancing the yield and controlling the pests

and pathogens of grain legumes.
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Introduction

Grain legumes also called ‘Poor man’s meat’ are an

essential entity in food and feed due to its protein, minerals,

and other bioactive molecules. Increasing nutritional

awareness increased the per-capita consumption of grain

legumes across the world (Amarowicz and Pegg 2008).

The symbiotic association of leguminous crops with rhi-

zobia contributes 65% of nitrogen (N) needs. Their better

adaptation as an inter-crop with cereals or tuber crops helps

in increased income generation and livelihood resilience of

small holder farmers. However, production level of such

leguminous crops has constraints in various forms such as

pest and pathogen attacks, infertile soils, and climate

changes. Development of improved cultivars through

breeding and molecular techniques had been practiced;

still, the productivity remains stagnant for the last two

decades. All these together attracted the attention at global

level, and thus, the general assembly of United Nations has

announced this year as ‘International Year of Pulses (2016

IYOP)’ to emphasize the need for focusing on pulses for

food and nutritional security and to create awareness and

understanding of the challenges faced in pulse farming and

trading (FAO 2014).

A cleaner and greener approach towards the improve-

ment of leguminous crop production is the use of a cate-

gory of microbes called Plant Growth-Promoting

Rhizobacteria (PGPR), a group of heterogeneous bacteria

found in rhizosphere or plant tissues (Kloepper and Schroth

1978). They induce plant growth by enhancing the avail-

ability of soil nutrients, supplying phytohormones, and

inducing systemic resistance against phytopathogens.

There are voluminous data available on PGPR, but most of

it belongs to the phylum Bacteroidetes, Firmicutes, and

Proteobacteria, of which the most commonly studied are
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Azospirillum, Azotobacter, Bacillus, Pseudomonas, Glu-

conacetobacter, Enterobacter, Serratia, Paenibacillus, and

Rhizobium (Bhattacharyya and Jha 2012). However, the

reports on the plant growth-promoting (PGP) traits of

bacteria belonging to the phylum Actinobacteria are lim-

ited, despite its ubiquitous existence in bulk soil, rhizo-

spheric soil, and plant tissues and their usefulness in

agriculture (Bhattacharyya and Jha 2012; Jog et al. 2012).

Hence, this review emphasizes to document mainly on PGP

traits of actinobacteria and how far it was studied in the

context of growth-promotion, biocontrol against pests, and

pathogens, as mitigators of abiotic stress, as a tool for

enhanced phytoremediation and bio-fortification.

Actinobacteria diversity

The bacteria belong to the phylum Actinobacteria are

Gram-positive filamentous bacteria, with 6 classes, 25

orders, 52 families, and 232 genera and represent one of the

largest taxonomic units among the 18 major lineages cur-

rently recognized within the domain Bacteria (Stacke-

brandt and Schumann 2000). They can thrive in either bulk

soil or rhizospheric soil, and due to spore forming char-

acteristics, they can remain dormant in agricultural soil for

a longer period. The actinobacteria population increases

with the soil depth up to horizon ‘C’. It is estimated that

actinobacteria are distributed with average 104–106

spores g-1 soil in various crops fields (Shaharokhi et al.

2005; Ul-Hassan and Wellington 2009). Though they are

mesophilic organisms, species of the family such as

Thermoactinomycetaceae are commonly found in compost

and manures at thermophilic growing temperature (Ul-

Hassan and Wellington 2009). They also stay as either

epiphyte or endophyte in plant tissues of wide host range

including barley, wheat, rice, soybean, cowpea, chickpea,

banana, tomato, and medicinal plants. Among them,

Streptomyces is the predominant genus followed by Acti-

nomadura, Microbispora, Micromonospora, Nocardia,

Nonomurea, Mycobacterium, Frankia, Actinoplanes, Sac-

charopolyspora, and Verrucosispora (Martinez-Hidalgo

et al. 2014; Vijayabharathi et al. 2016).

PGP traits of actinobacteria

As like other PGPR, actinobacteria also employ both direct

and in-direct mechanisms to influence the plant growth and

protection. The direct mechanisms involve the production

of vital factors for crop growth such as growth hormones

and the assistive actions on nitrogen fixation, phosphate

solubilization, and iron acquisition. PGP actinobacteria

indirectly influence the plant growth by controlling and

minimizing the deleterious effects of external stresses of

either biotic or abiotic sources through the following

modes: competition for nutrients, production of low

molecular inhibitory substances such as ammonia, cyano-

gens, alcohols, aldehydes, sulfides, and ketones, cell-wall

degrading enzymes, and secondary metabolites with bio-

cidal properties, in which the latter, two are the key phe-

nomenon deployed by the actinobacterial community (El-

Tarabily and Sivasithamparam 2006; Glick 2012; Bouiz-

garne 2013; Dey et al. 2014).

Nitrogen fixation

Nitrogen is the major essential crop nutrient available

through the process called symbiotic N fixation. This was

aided by the relationship between the members of the

family Rhizobiaceae, Bradirhizobiaceae, and Phyllobacte-

riaceae with the leguminous plants through the formation

of N-fixing specialized structure called nodules (Schultze

and Kondorosi 1998). Frankia, a versatile N fixing acti-

nobacteria, fixes N in non-legumes under both symbiotic

and free-living conditions. It infects the root cells of acti-

norhizal plants through either intracellular root-hair infec-

tion or intercellular root invasion (Benson and Silvester

1993). Besides this, several other endophytic actinobacteria

exhibited N-fixing ability which includes Arthrobacter,

Agromyces, Corynebacterium, Mycobacterium, Mi-

cromonospora, Propionibacteria, and Streptomyces (Sell-

stedt and Richau 2013). This was demonstrated long back

by Fedorov and Kalininskaya (1961) by their ability to

grow on N-free medium and acetylene reduction activity.

Recent studies using 15N isotope dilution analysis and

identification of nif genes further support this phenomenon

(Valdes et al. 2005; Ghodhbane-Gtari et al. 2010).

Molecular studies have established the fact that many

actinobacteria can occur as endophytes in various legumi-

nous and non-leguminous plants without forming nodule.

This is supported by the existence of nif sequence homol-

ogy in both Rhizobium and Frankia, the absence of nod

genes in the latter (Ceremonie et al. 1999). Even under field

conditions, enhanced nodulation of chickpea and soil N

content observed upon the application of Streptomyces

inoculants indicates their promotional effect and influence

of rhizobia-legume symbiosis in a non-specific manner

(Gopalakrishnan et al. 2015a, b). However, a detailed

understanding of the mechanisms on this symbiotic mode

needs to be established.

Phosphate solubilization

Influence of PGPR in enabling the availability of phos-

phate to plants through various mechanisms is highlighted

by various researchers across a range of soil conditions. In
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the context of actinobacteria, Arthrobacter, Rhodococcus,

Gordonia, Streptomyces, and Micromonospora have been

reported for P solubilization in vitro and glass house

conditions (Chen et al. 2006; Hamdali et al. 2008; Jog

et al. 2014). Initial report on P solubilizing capacity of a

non-streptomycete Micromonospora endolithica and its

subsequent effect on the growth of bean plants have been

reported by El-Tarabily et al. (2008). Similar effect has

also been demonstrated on wheat by Micromonospora

aurantiaca, Streptomyces griseus, and Streptomyces sp.,

under P-deficient soil (Hamdali et al. 2008; Jog et al.

2014). In these actinobacterial strains, production of

various organic acid including citric acid, gluconic acid,

lactic acid, malic acid, oxalic acid, propionic acid, and

succinic acid which aids for P solubilization has been

demonstrated (Chen et al. 2006; Hamdali et al. 2010; Jog

et al. 2014).

Iron acquisition

Iron in soil is known for its un-availability to both plants

and microbes due to its normal presence as insoluble

hydroxides and oxyhydroxides. This is made available by

the synthesis of siderophores, the low molecular weight

compounds which have high affinity towards iron. Iron

chelation by microbial siderophores from soil depends on

its pH, concentration, redox potential, stability constant,

and receptor availability to exchange with phy-

tosiderophores (Crowley 2006). Microbes produce variety

of siderophores and a major class includes catechols and

hydroxamate. Numerous strains of actinobacteria have

been reported as siderophore producers (Wang et al. 2014).

The genus Streptomyces is well known for its siderophores,

including its own characteristic types such as hydroxamate

siderophores: desferrioxamines and coelichelin (Imbert

et al. 1995; Challis and Ravel 2000); siderophore of other

actinobacteria members: heterobactin, a siderophore of

Rhodococcus and Nocardia (Lee et al. 2012); and also

siderophores of other bacterial members: enterobactin,

siderophore of the family Enterobacteriaceae (Fiedler et al.

2001). Besides the context of plant nutrition, siderophore

also offers for plant protection through the control of

phytopathogens. They acquire iron thereby create a com-

petitive environment for other pathogenic microbes in the

root vicinity (Glick 2012). This is an effective phenomenon

in controlling fungal pathogens as they produce low-

affinity siderophores, which can be eliminated by high

affinity siderophores of actinobacteria (Wang et al. 2014).

Such siderophore producing Streptomyces was also found

to show control against Fusarium oxysporum f. sp. ciceri

under wilt sick field conditions on chickpea (Gopalakr-

ishnan et al. 2011).

Phytohormones

Phytohormone producing capacity of several rhizospheric

and endophytic actinobacteria was demonstrated by various

researchers for indole acetic acid (IAA), cytokinins, and

gibberellins (El-Tarabily and Sivasithamparam 2006;

Vijayabharathi et al. 2016). In recent years, endophytic

actinobacteria are getting greater interest. Nocardiopsis, an

endophytic actinobacterium associated with mandarin

recorded highest IAAproduction (222.75 ppm) (Shutsrirung

et al. 2013). IAA producing endophytic Streptomyces atro-

virens, Streptomyces olivaceoviridis, Streptomyces rimosus,

Streptomyces rochei, and Streptomyces viridis showed

improved seed germination and root elongation and growth

(El-Tarabily 2008; Khamna et al. 2010; Abd-Alla et al.

2013). IAA also triggers cell differentiation, hyphal elon-

gation, and sporulation in Streptomyces atroolivaceus

(Matsukawa et al. 2007).Metabolites such as pteridic acidsA

and B produced by endophytic Streptomyces hygroscopicus

TP_A045 were found to show auxin-like activity and induce

root elongation in common bean (Igarashi et al. 2002).

Hence, the phytohormone producing potential and metabo-

lites with phytohormone mimicking activity of actinobac-

teria can be exploited for enhancing crop productivity of not

only legumes and also other crops.

Cell wall degrading enzymes

Majority of soil actinobacteria are saprophytic in nature and

core of decomposition, which was aided by the synthesis of

various classes of extracellular enzymes including nucleases,

lipases, glucanases, xylanases, amylases, proteinases, pepti-

dases, peroxidases, chitinases, cellulases, ligninases, pecti-

nase, hemicellulase, and keratinase. All these enzymes

together contribute to its biocontrol potential against a wide

range of phytopathogens, because the cell wall of most fungal

and bacterial pathogens consist of polymers such as chitin,

glucan, cellulose, proteins, and lipids (Gupta et al. 1995; Fodil

et al. 2011). Among them, chitinases are of great importance

and many Streptomyces spp. are observed to inhibit both

fungal pathogens and insect pests (Tahmasebpour et al. 2014;

Karthik et al. 2015; Yandigeri et al. 2015).

Other secondary metabolites

According to the literature survey, there are around

300,000 to 600,000 natural compounds derived from living

sources. Among them, the major contributors are found to

be microbes (60–80,000), of which actinobacteria accounts

for *60% of new antibiotics. This is supported by the

genetic makeup of biosynthetic pathways and their enzyme

activities for branching, alkylations, condensations,
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isomerizations, and oxidations. The single genus, Strepto-

myces, is the major producer (39%) of secondary metabo-

lites (Olano et al. 2008; Berdy 2012). In addition, they have

the capacity to produce a wide variety of compounds

including polyene macrolides, actinomycins, aminoglyco-

sides, streptothricins, anthracyclines, cyclopolylactones,

and quinoxaline peptides. Non-Streptomyces actinobacteria

also found to produce compounds such as glycopeptides

and orthosomycins (Nicolaou et al. 2009).

It is also noted that half of the microbial metabolites

express one or multiple bioactivities including antibiotic or

enzyme inhibitory activities or other activity. In the context

of agriculture, more than 3000 pesticide and herbicide

activities, including phytotoxic, plant growth regulatory,

insecticide, larvicide, acaricide, algicide, and nematicide

activities were reported. The major advantage of using

secondary metabolites from actinobacteria over the fungal

metabolites is lower phytotoxic activity. More than 50% of

fungal metabolites were observed to be phytotoxic which

contrasts with the 2% of phytotoxic actinoproducts (Berdy

2012). These kinds of actinobacteria have a competitive

edge over other microbial communities as it increases their

chances of survival. This characteristic has been exploited

more than five decades ago and studied by several

researchers for the biological control of plant pathogens

and disease suppression (Weindling et al. 1950; Cham-

berlain and Crawford 1999; Meschke et al. 2012). Several

commercial formulations with the antibiotic or microbes as

an active ingredient are marketed as biocontrol products.

Representatives include, Actinovate� and Actino-Iron� by

Streptomyces lydicus WYEC 108 (Crawford et al. 2005),

ArzentTM by four different strains of Streptomyces hygro-

scopicus (Hamby and Crawford 2000) and Mycostop� by

Streptomyces griseoviridis K61 (Figueiredo et al. 2010).

Besides this, Blasticidin-S from Streptomyces griseochro-

mogenes and kasugamycin from Streptomyces kasugaensis

against rice blast disease, mildiomycin from Streptomyces

rimofaciens against powdery mildew disease, oxytetracy-

cline form S. rimosus for the control of bacterial diseases,

and polyoxins from Streptomyces cacaoi for the control of

fungal incidences at field levels demonstrates the impor-

tance of secondary metabolites from actinobacteria for

sustainable agriculture. Several reviews depicting the

importance of actinobacteria and its compounds as bio-

control agents are available (Copping and Menn 2000;

Copping and Duke 2007).

Host plant resistance

Host plant resistance is one of the key tools for manage-

ment of phytopathogens and pests in which the protection

is conferred systemically even in the non-exposed parts of

the plant. Plants were reported with two types of non-

specific defense systems: (1) induced systemic resistance

(ISR) primed by the influence of beneficial microbes and

(2) systemic acquired resistance (SAR) primed by the

influence of pathogens (Schuhegger et al. 2006). The ISR

mediated by rhizobacteria predisposes the plants to resist

further attacks. On the contrary, the SAR is induced by

pathogens, resulting in the activation of resistance mech-

anisms in other uninfected parts of plants. In general, the

defense systems are mediated by signaling molecules such

as jasmonic acid (JA), salicylic acid (SA), and ethylene

(ET) (Pieterse et al. 1996). JA activates defense-related

genes: defensins, thionins, and pectinase inhibitors (Hause

et al. 2002). The SA induces genes that encode the

pathogenesis-related proteins (PRs) such as chitinase, b-1,3
glucanases, and thaumatin such as proteins and peroxidases

(Uknes et al. 1992). Actinobacteria are demonstrated as

inducers of plant immunization against different pathogens

such as Rhizoctonia, Fusarium, Pythium, Phytophthora,

and Colletotrichum (Raaijmakers et al. 2009). Endophytic

actinobacterium Streptomyces sp. was able to control take-

all disease of wheat and potato scab under the field con-

ditions (Liu et al. 1996; Coombs et al. 2004). Conn et al.

(2008) observed that endophytic Streptomyces sp. EN27

and Micromonospora sp. EN 43 are able to induce resis-

tance in Arabidopsis thaliana by up-regulating genes

involved in SAR. Culture filtrates of EN 43 also induced

SAR and the JA/ET pathway. The bacterial determinants

involved in triggering ISR include secondary metabolites,

siderophores, and colonization efficiency. Recently, many

studies on Streptomyces-induced host plant resistance were

evaluated on range of crops including forage crops, veg-

etable crops, and economically important woody species

such as Arabidopsis (Bernardo et al. 2013), potato (Arse-

neault et al. 2014), oak (Kurth et al. 2014), and Eucalyptus

(Salla et al. 2016), and such an opportunity for encasing

actinobacteria for grain legumes needs to be exploited.

PGP actinobacteria as helper bacteria

Actinobacteria are able to promote N-fixing symbiosis

(Solans 2007; Solans and Vobis 2013) and also in other

symbiotic relationships of legumes and non-legumes plants

by their role as helper bacteria; however, it is documented in

very few reports. Actinobacteria are found to promote

mycorrhizal symbioses via the promotion of hyphal elon-

gation of symbiotic fungi (Schrey and Tarkka 2008). Such an

enhanced mycorrhizal symbiosis was observed on the roots

of sorghum and clover by Streptomyces coelicolor and

Streptomyces spp. MCR9 and MCR24, respectively (Abdel-

Fattah and Mohamedin 2000; Franco-Correa et al. 2010).

Solans and their research group have studied the helper

effect of actinobacteria with various host plants. This was
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demonstrated in the system of Ochetophila trinervis and

Frankia, with the co-inoculation of Streptomyces MM40,

Actinoplanes ME3, and Micromonospora MM18 (Solans

2007). The same actinobacteria were studied in other

symbiotic systems of Medicago sativa–Sinorhizobium

meliloti (Solans et al. 2009) and Lotus tenuis–Mesorhizo-

bium loti (Solans et al. 2015). It was noticed that the plants

co-inoculated with actinobacteria and rhizobium showed

increased nodulation and plant growth compared to the

plants with single inoculations. Similar results were noted

by other researchers as well. The combination of Strepto-

myces kanamyceticus and Bradyrhizobium japonicum

increased nodulation and shoot N composition of soybean

by up to 55 and 41%, respectively (Gregor et al. 2003). Soe

and Yamakawa (2013) examined the effect of co-inocula-

tion of Bradyrhizobium yuanmingense MAS34 and Strep-

tomyces griseoflavus P4 in enhancing nodulation, N2

fixation, and seed yield in different soybean varieties. The

results of these researchers clearly demonstrated the

importance of actinobacterial inoculants in growth pro-

motion of leguminous and non-leguminous plants.

PGP actinobacteria as stress relievers

Abiotic stress factors such as extreme temperatures,

drought, flooding, salinity, metal stress, and nutrient stress

are likely to cause serious impacts on crop yields and

impose severe pressure on soil and water resources.

According to the estimates from Food and Agricultural

Organization (FAO), abiotic stress factors will result in

30% land degradation in the next 25 years and up to 50%

by the year 2050 if precautionary measures are not taken

(Munns 2002).

Actinobacteria are known to possess better tolerance

towards temperature, salinity, and metals; inoculation of

such tolerant strains is observed to promote plant growth.

Aly et al. (2003, 2012) observed the PGP effect of Strep-

tomyces sp. on maize and wheat under saline conditions.

Palaniyandi et al. (2014) observed enhanced biomass and

lateral roots of Arabidopsis seedlings under in vitro con-

ditions of 1 mol l-1NaCl upon the inoculation with

Streptomyces sp. PGPA39 exhibiting salt tolerance and

other PGP traits. Srivastava et al. (2015) attempted to study

the mechanism underlying actinobacteria-mediated stress

tolerance in chickpea. They used Streptomyces rochei SM3

against the challenges of Sclerotinia sclerotiorum and

NaCl on chickpea. Treatment with SM3 suppressed

chickpea mortality due to S. sclerotiorum infection (48%)

and increased biomass accumulation (20%) in the salt-

stressed conditions. Physiological responses showed

increased phenylalanine ammonia lyase and catalase

activities, along with the accumulation of phenolics and

proline in SM3-treated plants. Investigation at genetic level

further showed that the strain SM3 triggered the ET

responsive ERF transcription factor (CaTF2) under the

challenged conditions. Drought tolerant endophytic acti-

nobacteria, Streptomyces coelicolor DE07, Streptomyces

olivaceus DE10, and Streptomyces geysiriensis DE27, with

intrinsic water stress tolerance from -0.05 to -0.73 MPa

and IAA production were isolated from arid and drought

affected regions. Co-inoculation of endophytes DE10 and

DE27 recorded the highest yield in wheat (Yandigeri et al.

2012). In addition, induction of higher osmotic pressure of

plant cells, callose accumulation, and cell wall lignification

as a strategy for drought tolerance has been documented for

Streptomyces padanus (Hasegawa et al. 2004, 2005).

Recent studies on Streptomyces pactum Act12, a multi-

functional strain with drought resistance, metal resistance

(Cao et al. 2016), and antagonistic traits against phy-

topathogenic fungus (Zhao et al. 2011) explores the role of

these in-kind actinomycetes for arid and semi-arid regions.

Responding to stress, plant synthesizes higher level of

ET called ‘stress ethylene’ which leads to plants’ prema-

ture death. In fact, some of the effects of stress cannot

solely be attributed to the stress itself but are also due to

autocatalytic ethylene synthesis (Van Loon 1984). These

effects can be controlled by the action of an enzyme of

microbial origin, 1-aminocyclopropane-1-carboxylate

(ACC) deaminase which converts the ethylene precursor

ACC to ammonia and a-ketobutyrate. Characterization of

this enzyme effects on stress management is observed for

the past two decades, and now considered as a key phe-

nomenon of PGP traits (Glick 1995). Many of the acti-

nobacteria are shown to produce ACC deaminase such as

Streptomyces, Amycolatopsis, Nocardia, Mycobacterium,

Rhodococcus, and others (Nascimento et al. 2014). Siddi-

kee et al. (2010) isolated several halotolerant actinobacteria

strains with ACC deaminase, from the soil of barren fields

and the rhizosphere of naturally growing halophytic plants

and found that they can increase canola plant growth.

Similarly, Selvakumar et al. (2015) identified ACC deam-

inase producing Citricoccus zhacaiensis B-4, an osmotol-

erant actinobacterium from the banana rhizosphere and

observed improved percent germination, seedling vigor and

germination rate on onion seeds (cv. Arka Kalyan) at

osmotic potentials up to -0.8 MPa. El-Tarabily (2008)

showed that ACC deaminase producing Streptomyces fil-

ipinensis 15 and S. atrovirens 26 could reduce tomato

endogenous ACC levels in both roots and shoots, resulting

in increased plant growth. Similarly, Palaniyandi et al.

(2013) also showed that some Streptomyces spp. of yam

rhizospheres could produce ACC deaminase. Dastager

et al. (2010) indicated that the cowpea PGP bacterium

Micrococcus sp. NII-0909 produced ACC deaminase under

free-living conditions. Idris et al. (2004) isolated
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endophytic Curtobacterium, Okibacterium, and

Rhodococcus strains with ACC deaminase activity from

Thlaspi goesingense. All these suggest that, irrespective of

habitat, i.e., rhizospheric/endophytic or stressed/non-stres-

sed soil, actinobacteria with ACC deaminase can be used

for the dual purposes of enhancing productivity and stress

control.

PGP actinobacteria in bioremediation of metals

Metal pollution of agricultural lands has risen mainly by

anthropogenic activities, led to the shrinkage of healthy

agricultural cropland, and hence demands the farmers to

use contaminated sites for crop cultivation. According to

the Environmental Protection Agency (EPA) report, the

United States had more than 40,000 contaminated sites.

In addition, 100,000 ha of cropland, 55,000 ha of pas-

ture, and 50,000 ha of forest have been lost by heavy

metal contamination and demands for reclamation pro-

cess (Ragnarsdottir and Hawkins 2005). PGPR reside in

metalliferous soil with higher metal solubilizing and

extracting capacity can play decisive role in the context

of bioremediation besides enhancing phytoremediation

process. Metal mobilizing property of these microbes is

aided by its own substances such as siderophores,

organic acids, polymeric substances, biosurfactants, and

glycoprotein and also by the reactions such as metal

reduction and oxidization and biosorption. Mechanism

behind the metal mobilization was reviewed in detail by

Ma et al. (2011), Rajkumar et al. (2012), and Sessitsch

et al. (2013), and a review on current research status of

bioremediation involving actinobacteria has been given

by Alvarez et al. (2017). From the published data, it is

understood that actinobacteria with metal mobilizing and

PGP traits were evaluated mostly on non-edible/hyper

accumulating plants and on toxic metals in the area of

phytoremediation. Such works on edible crops were a

few. Some of the representative reports stating the

potential of PGP actinobacteria with metal mobilization

traits were given in Table 1.

PGP actinobacteria as nutrient enhancer

Actinobacteria influence the soil fertility through the

involvement of many components and serve as nutrient

enhancer. Besides producing siderophores and solubilizes

Table 1 Metal mobilization potential of PGP actinobacteria

Actinobacteria Source Identified PGP/metal

mobilization traits

Plant studied Exhibited effects References

Azotobacter chroococcum HKN-5 Agronomic soils in Hong

Kong

N fixation, P and K

solubilization, metal

mobilization

Brassica

juncea

Increased plant

aboveground

biomass

Wu et al.

(2006)

Rhodococcus sp. Fp2

Rhodococcus erythropolis MTCC

7905

Cr-contaminated site situated

in the Indian Himalayan

Region

Metal detoxification

mechanism

Pisum

sativum

Increased plant

growth

Trivedi

et al.

(2007)

Streptomyces acidiscabies E13 Former uranium mine,

Wismut, in eastern

Thuringia, Germany

IAA and Siderophore:

desferrioxamine E

desferrioxamine B,

and coelichelin

Vigna

unguiculata

Increased height and

biomass

Dimkpa

et al.

(2008)

Streptomyces tendae F4 Former Uranium mine,

Wismut in Eastern

Thuringia, Germany

Siderophore:

Desferrioxamine B,

desferrioxamine E

and coelichelin

Helianthus

annuus

Enhanced Cd and Fe

uptake by plants

through facilitating

their mobilization

Dimkpa

et al.

(2009)

Azotobacter spp. Manganese mine spoil dump

near Gumgaon, India

Extracellular

polymeric

substances or cell

wall

lipopolysaccharides

Triticum

aestivum

Immobilized Cd and

Cr and decreased

their uptake

Joshi and

Juwarkar

(2009)

Arthrobacter sp. MT16,

Azotobacter vinelandii GZC24,

Microbacterium sp. JYC17,

Microbacteriumlactium YJ7

Cu-tolerant plant species

growing on a Cu mine

wasteland, Nanjing, China

ACC deaminase,

siderophore, IAA, P

solubilization

Brassica

napus

Increased root length

promotion

He et al.

(2010)

Streptomyces mirabilis P16B-1 Heavy metal-contaminated

soil derived from a former

uranium mining site in

Ronneburg, Germany

Siderophore:

Ferrioxamines E, B,

D, and G

Sorghum

bicolor

Increased plant

biomass

Schütze

et al.

(2014)
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phosphate, they are known to produce cocktail of enzymes

which include amylase, chitinase, cellulase, invertase,

lipase, keratinase, peroxidase, pectinase, protease, phytase,

and xylanase which make the complex nutrients into sim-

ple mineral forms. This nutrient cycling capacity makes

them as an ideal candidate for natural fertilizers (Jog et al.

2016). In addition, the metal mobilizing ability can be

applied for biofortification approaches for enhancing seed

mineral nutrients such as Fe, Zn, and Se. However, limited

studies are available on legumes. A recent study had

revealed that arbuscular mycorrhizal fungal colonization

on chickpea roots enhanced the crop growth, and grain Fe

and Zn contents (Pellegrino and Bedini 2014). Verma et al.

(2013) documented the effect of two PGPR isolates, Me-

sorhizobium sp. and Pseudomonas sp., on chickpea in

enhancing yield and Fe acquisition under greenhouse and

field conditions. Similar results were reported by Rudresh

et al. (2005) using a consortium of Rhizobium sp., phos-

phate solubilizing Bacillus megaterium sub sp. phospati-

cum and Trichoderma sp. on chickpea under greenhouse

and field conditions. Recent study of Khalid et al. (2015)

on chickpea further supports the ability of PGP bacterial

strains with siderophore producing capacity in increasing

Fe concentration. Some of the PGP Streptomyces from our

microbial collection were found to increase the grain Fe

and Zn contents by 38 and 30%, respectively, in chickpea

(Sathya et al. 2016). Though the effects of actinobacteria

were not reported in the context of biofortification, previ-

ously demonstrated effects on their metal mobilization

property along with PGP reveals that, actinobacteria are

capable of mobilizing minerals and metals in a wide range

of food crops including cereals, oil seeds, and leguminous

crops.

Conclusion

The present review documents the potential of PGP acti-

nobacteria and highlights its unique properties in plant

growth induction, defense pathways, and stress manage-

ment. The available information suggests that actinobac-

teria represent a hidden repertoire and sustainable source

for bioactive and chemically novel natural products, which

can explored to a great extent in various fields of agricul-

tural sector. However, such an extent of success especially

on legumes under field conditions is limited. This indicates

the existence of large gaps between research and devel-

opment of potential actinobacterial inoculums for field

application. Therefore, generation of comprehensive

knowledge on screening, characterization, and formulation

strategies and understanding of molecular mechanisms

behind their action and evaluation at field levels are

necessary.
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